Flying Spin Qubits in Quantum Dot Arrays Driven by Spin-Orbit Interaction

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Pub Date : 2024-11-21 DOI:10.22331/q-2024-11-21-1533
D. Fernández-Fernández, Yue Ban, G. Platero
{"title":"Flying Spin Qubits in Quantum Dot Arrays Driven by Spin-Orbit Interaction","authors":"D. Fernández-Fernández, Yue Ban, G. Platero","doi":"10.22331/q-2024-11-21-1533","DOIUrl":null,"url":null,"abstract":"Quantum information transfer is fundamental for scalable quantum computing in any potential platform and architecture. Hole spin qubits, owing to their intrinsic spin-orbit interaction (SOI), promise fast quantum operations which are fundamental for the implementation of quantum gates. Yet, the influence of SOI in quantum transfer protocols remains an open question. Here, we investigate flying spin qubits mediated by SOI, using shortcuts to adiabaticity protocols, i.e., the long-range transfer of spin qubits and the quantum distribution of entangled pairs in semiconductor quantum dot arrays. We show that electric field manipulation allows dynamical control of the SOI, enabling simultaneously the implementation of quantum gates during the transfer, with the potential to significantly accelerate quantum algorithms. By harnessing the ability to perform quantum gates in parallel with the transfer, we implement dynamical decoupling schemes to focus and preserve the spin state, leading to higher transfer fidelity.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"25 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-11-21-1533","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum information transfer is fundamental for scalable quantum computing in any potential platform and architecture. Hole spin qubits, owing to their intrinsic spin-orbit interaction (SOI), promise fast quantum operations which are fundamental for the implementation of quantum gates. Yet, the influence of SOI in quantum transfer protocols remains an open question. Here, we investigate flying spin qubits mediated by SOI, using shortcuts to adiabaticity protocols, i.e., the long-range transfer of spin qubits and the quantum distribution of entangled pairs in semiconductor quantum dot arrays. We show that electric field manipulation allows dynamical control of the SOI, enabling simultaneously the implementation of quantum gates during the transfer, with the potential to significantly accelerate quantum algorithms. By harnessing the ability to perform quantum gates in parallel with the transfer, we implement dynamical decoupling schemes to focus and preserve the spin state, leading to higher transfer fidelity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子点阵列中由自旋轨道相互作用驱动的飞行自旋微ubits
量子信息传输是任何潜在平台和架构中可扩展量子计算的基础。空穴自旋量子比特因其固有的自旋轨道相互作用(SOI)而有望实现快速量子操作,这对量子门的实现至关重要。然而,SOI 对量子传输协议的影响仍是一个未决问题。在这里,我们利用绝热协议的捷径,即自旋量子比特的长程传输和纠缠对在半导体量子点阵列中的量子分布,研究了由 SOI 介导的飞行自旋量子比特。我们的研究表明,电场操纵可实现对 SOI 的动态控制,在传输过程中同时实现量子门,从而有可能显著加速量子算法。通过利用量子门与转移并行执行的能力,我们实施了动态解耦方案来聚焦和保留自旋状态,从而提高了转移的保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
期刊最新文献
Flying Spin Qubits in Quantum Dot Arrays Driven by Spin-Orbit Interaction Time dependent Markovian master equation beyond the adiabatic limit Construction of perfect tensors using biunimodular vectors Inevitability of knowing less than nothing Constant-depth circuits for Boolean functions and quantum memory devices using multi-qubit gates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1