{"title":"Adjusting the Coordination Configuration by Changing Electrostatic Potential: Introducing N/O/S Heteroatoms Based on the Electronic Effect","authors":"Chao Zhang, Tingwei Wang, Shaoqun Li, Zujia Lu, Meiqi Xu, Cong Li, Qiyao Yu, Jianguo Zhang","doi":"10.1021/acs.joc.4c02287","DOIUrl":null,"url":null,"abstract":"Energetic coordination compounds (ECCs) have demonstrated unique advantages in regulating the physicochemical properties of energetic materials through the design of organic ligands. The fundamental approach involves altering the electron cloud density distribution of organic ligands to modify the characteristics of coordination sites and, thus, achieve new coordination configurations. In this study, Mulliken charge distribution and surface electrostatic potential analysis were used to elucidate the effects of pyridinic N, pyrrolic N, oxazolic O, and thiazolic S on the electron cloud density of carbohydrazide groups through the induction effect and conjugate effect. Furthermore, three AgClO<sub>4</sub>-based ECCs were synthesized based on 1<i>H</i>-imidazole-4-carbohydrazide, oxazole-4-carbohydrazide, and thiazole-4-carbohydrazide. Single-crystal X-ray diffraction analysis revealed that [Ag(IZ-4-CA)ClO<sub>4</sub>]<i><sub>n</sub></i> has a one-dimensional (1D) chain structure, while Ag<sub>2</sub>(OZCA)<sub>2</sub>(ClO<sub>4</sub>)<sub>2</sub> and Ag<sub>2</sub>(SZCA)<sub>2</sub>(ClO<sub>4</sub>)<sub>2</sub> exhibit zero-dimensional structures. The 1D structure, with good planarity, results in [Ag(IZ-4-CA)ClO<sub>4</sub>]<i><sub>n</sub></i> having lower mechanical sensitivity (IS = 21 J, FS = 80 N). The introduction of oxazolic O enhances oxygen balance (OB), leading to a higher predicted detonation velocity and pressure for Ag<sub>2</sub>(OZCA)<sub>2</sub>(ClO<sub>4</sub>)<sub>2</sub> (<i>D</i> = 6.4 km s<sup>–1</sup>, <i>P</i> = 23.6 GPa). Although the introduction of thiazolic S is unfavorable for improving oxygen balance, Ag<sub>2</sub>(SZCA)<sub>2</sub>(ClO<sub>4</sub>)<sub>2</sub> exhibits the highest initial decomposition temperature among the three, at 232 °C. Additionally, initiation tests demonstrated that three ECCs can successfully detonate cyclotrimethylenetrinitramine (RDX), indicating good initiation capabilities.","PeriodicalId":57,"journal":{"name":"The Journal of Organic Chemistry","volume":"8 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Organic Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.joc.4c02287","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
Energetic coordination compounds (ECCs) have demonstrated unique advantages in regulating the physicochemical properties of energetic materials through the design of organic ligands. The fundamental approach involves altering the electron cloud density distribution of organic ligands to modify the characteristics of coordination sites and, thus, achieve new coordination configurations. In this study, Mulliken charge distribution and surface electrostatic potential analysis were used to elucidate the effects of pyridinic N, pyrrolic N, oxazolic O, and thiazolic S on the electron cloud density of carbohydrazide groups through the induction effect and conjugate effect. Furthermore, three AgClO4-based ECCs were synthesized based on 1H-imidazole-4-carbohydrazide, oxazole-4-carbohydrazide, and thiazole-4-carbohydrazide. Single-crystal X-ray diffraction analysis revealed that [Ag(IZ-4-CA)ClO4]n has a one-dimensional (1D) chain structure, while Ag2(OZCA)2(ClO4)2 and Ag2(SZCA)2(ClO4)2 exhibit zero-dimensional structures. The 1D structure, with good planarity, results in [Ag(IZ-4-CA)ClO4]n having lower mechanical sensitivity (IS = 21 J, FS = 80 N). The introduction of oxazolic O enhances oxygen balance (OB), leading to a higher predicted detonation velocity and pressure for Ag2(OZCA)2(ClO4)2 (D = 6.4 km s–1, P = 23.6 GPa). Although the introduction of thiazolic S is unfavorable for improving oxygen balance, Ag2(SZCA)2(ClO4)2 exhibits the highest initial decomposition temperature among the three, at 232 °C. Additionally, initiation tests demonstrated that three ECCs can successfully detonate cyclotrimethylenetrinitramine (RDX), indicating good initiation capabilities.
期刊介绍:
The Journal of Organic Chemistry welcomes original contributions of fundamental research in all branches of the theory and practice of organic chemistry. In selecting manuscripts for publication, the editors place emphasis on the quality and novelty of the work, as well as the breadth of interest to the organic chemistry community.