Qi Zhang, Han Wang, Qiangqiang Zhao, Asmat Ullah, Xiuzun Zhong, Yulin Wei, Chenyang Zhang, Ruida Xu, Stefaan De Wolf, Kai Wang
{"title":"Machine-Learning-Assisted Design of Buried-Interface Engineering Materials for High-Efficiency and Stable Perovskite Solar Cells","authors":"Qi Zhang, Han Wang, Qiangqiang Zhao, Asmat Ullah, Xiuzun Zhong, Yulin Wei, Chenyang Zhang, Ruida Xu, Stefaan De Wolf, Kai Wang","doi":"10.1021/acsenergylett.4c02610","DOIUrl":null,"url":null,"abstract":"Buried-interface engineering is crucial to the performance of perovskite solar cells. Self-assembled monolayers and buffer layers at the buried interface can optimize charge transfer and reduce recombination losses. However, the complex mechanisms and the difficulty in selecting suitable functional groups pose great challenges. Machine learning (ML) offers a powerful tool for screening and identifying effective structures for interface modification. Our ML-driven approach led to the preparation of two promising organic molecules, PAPzO and PAPz, which exhibit synergistic interactions with SnO<sub>2</sub> and perovskites. These molecules decrease charge trap densities, elongate carrier lifetimes, and retard perovskite crystallization. PAPzO, with a stronger binding energy and better aligned energy levels, enables a power conversion efficiency (PCE) of 26.04% and long-term stability, maintaining 91.24% of its original PCE after 1,200 h of continuous maximum power point tracking. This ML-integrated approach marks a significant advancement in the development of efficient and stable perovskite photovoltaics.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"46 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c02610","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Buried-interface engineering is crucial to the performance of perovskite solar cells. Self-assembled monolayers and buffer layers at the buried interface can optimize charge transfer and reduce recombination losses. However, the complex mechanisms and the difficulty in selecting suitable functional groups pose great challenges. Machine learning (ML) offers a powerful tool for screening and identifying effective structures for interface modification. Our ML-driven approach led to the preparation of two promising organic molecules, PAPzO and PAPz, which exhibit synergistic interactions with SnO2 and perovskites. These molecules decrease charge trap densities, elongate carrier lifetimes, and retard perovskite crystallization. PAPzO, with a stronger binding energy and better aligned energy levels, enables a power conversion efficiency (PCE) of 26.04% and long-term stability, maintaining 91.24% of its original PCE after 1,200 h of continuous maximum power point tracking. This ML-integrated approach marks a significant advancement in the development of efficient and stable perovskite photovoltaics.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.