{"title":"The influence of metal element types on the formation mechanism and properties of high-entropy ceramic powders and coatings","authors":"Wen-wei Sun, Yi Hu, Yong Yang, Hong-jian Zhao, Yan-wei Wang, Wei Li, Yu-xuan Shao, Pei-wen Ru, Yu-duo Ma, Sheng-yong Gao, Ai-min Li, Huan-huan Zhang","doi":"10.1016/j.jallcom.2024.177680","DOIUrl":null,"url":null,"abstract":"High entropy carbide ceramics, known for their single-phase formation and tunable properties, have seen limited research on regulating the performance of powders and coatings through elemental changes. This study focused on how different elements affect high entropy phase. Two reaction systems were established using precursors Ta<sub>2</sub>O<sub>5</sub>, ZrO<sub>2</sub>, Nb<sub>2</sub>O<sub>5</sub>, TiO<sub>2</sub>, V<sub>2</sub>O<sub>5</sub>, MoO<sub>3</sub>, and carbon black to explore the impact of two elements on the formation of high-entropy carbide. The (TaZrTiNbV)C and (TaMoTiNbV)C dense coatings were prepared by plasma spraying. The influences of two elements (Zr and Mo) on the phase, microstructure, property, and formation mechanism of the coating were analyzed. The (TaZrTiNbV)C coating showing a hardness of 1762 HV<sub>0.1</sub> and a toughness of 3.1<!-- --> <!-- -->MPa·m<sup>1/2</sup>, which were attributed to the presence of finely-grained (TaZrTiNbV)C particles.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"2 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177680","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High entropy carbide ceramics, known for their single-phase formation and tunable properties, have seen limited research on regulating the performance of powders and coatings through elemental changes. This study focused on how different elements affect high entropy phase. Two reaction systems were established using precursors Ta2O5, ZrO2, Nb2O5, TiO2, V2O5, MoO3, and carbon black to explore the impact of two elements on the formation of high-entropy carbide. The (TaZrTiNbV)C and (TaMoTiNbV)C dense coatings were prepared by plasma spraying. The influences of two elements (Zr and Mo) on the phase, microstructure, property, and formation mechanism of the coating were analyzed. The (TaZrTiNbV)C coating showing a hardness of 1762 HV0.1 and a toughness of 3.1 MPa·m1/2, which were attributed to the presence of finely-grained (TaZrTiNbV)C particles.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.