Tianyu Sun, Yang Wu, Heqi Ma, Chao Zhang, Chonghui Li, Baoyuan Man, Cheng Yang, Zhen Li
{"title":"The Design of WTe2/Graphene/Ag NPs Heterostructure for the Improvement of the Chemical Enhancement in SERS","authors":"Tianyu Sun, Yang Wu, Heqi Ma, Chao Zhang, Chonghui Li, Baoyuan Man, Cheng Yang, Zhen Li","doi":"10.1021/acs.nanolett.4c04339","DOIUrl":null,"url":null,"abstract":"Combining the advantages of metal and two-dimensional (2D) nanomaterials, various 2D/metal composite structures are proposed as surface-enhanced Raman spectroscopy (SERS) substrates. However, the chemical enhancement in the composite structure is usually less responsible for the total enhancement. In this work, we proposed a heterostructure including WTe<sub>2</sub>/graphene/Ag nanoparticles (WTe<sub>2</sub>/Gr/Ag) as an effective platform for SERS. The matching of energy levels facilitates charge transfer (CT) within the composite structure, which in turn significantly improves the chemical enhancement of SERS. Compared with WTe<sub>2</sub>/Ag or Gr/Ag substrate, the SERS signals can be amplified up to 18-fold, and the detection limit could further reduce 3 orders of magnitude. Furthermore, the CT process in the SERS test can be further promoted after introducing the pyroelectric field based on the ferro-electricity of WTe<sub>2</sub>. The enhancement factor of the WTe<sub>2</sub>/Gr/Ag substrate finally reached 1.34 × 10<sup>12</sup>. This work proposes a new idea for the design of highly sensitive SERS sensors.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"23 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04339","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Combining the advantages of metal and two-dimensional (2D) nanomaterials, various 2D/metal composite structures are proposed as surface-enhanced Raman spectroscopy (SERS) substrates. However, the chemical enhancement in the composite structure is usually less responsible for the total enhancement. In this work, we proposed a heterostructure including WTe2/graphene/Ag nanoparticles (WTe2/Gr/Ag) as an effective platform for SERS. The matching of energy levels facilitates charge transfer (CT) within the composite structure, which in turn significantly improves the chemical enhancement of SERS. Compared with WTe2/Ag or Gr/Ag substrate, the SERS signals can be amplified up to 18-fold, and the detection limit could further reduce 3 orders of magnitude. Furthermore, the CT process in the SERS test can be further promoted after introducing the pyroelectric field based on the ferro-electricity of WTe2. The enhancement factor of the WTe2/Gr/Ag substrate finally reached 1.34 × 1012. This work proposes a new idea for the design of highly sensitive SERS sensors.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.