Why Do Semianalytic Models Predict Higher Scatter in the Stellar Mass–Halo Mass Relation Than Cosmological Hydrodynamic Simulations?

Antonio J. Porras-Valverde, John C. Forbes, Rachel S. Somerville, Adam R. H. Stevens, Kelly Holley-Bockelmann, Andreas A. Berlind and Shy Genel
{"title":"Why Do Semianalytic Models Predict Higher Scatter in the Stellar Mass–Halo Mass Relation Than Cosmological Hydrodynamic Simulations?","authors":"Antonio J. Porras-Valverde, John C. Forbes, Rachel S. Somerville, Adam R. H. Stevens, Kelly Holley-Bockelmann, Andreas A. Berlind and Shy Genel","doi":"10.3847/1538-4357/ad7b0f","DOIUrl":null,"url":null,"abstract":"Semianalytic models (SAMs) systematically predict higher-stellar mass scatter at a given halo mass than hydrodynamical simulations and most empirical models. Our goal is to investigate the physical origin of this scatter by exploring modifications to the physics in the SAM Dark Sage. We design two black hole formation models that approximate results from the IllustrisTNG 300-1 hydrodynamical simulation. In the first model, we assign a fixed black hole mass of 106M⊙ to every halo that reaches 1010.5M⊙. In the second model, we disregard any black hole growth as implemented in the standard Dark Sage model. Instead, we force all black hole masses to follow the median z = 0 black hole mass–halo mass relation in IllustrisTNG 300-1 with an imposed fixed scatter. We find that each model on its own does not significantly reduce the scatter in stellar mass. To explore the effects of active galactic nucleus (AGN) feedback in addition to black hole seeding, we replace the native Dark Sage AGN feedback model with a simple model where we turn off cooling for galaxies with black hole masses above 108M⊙. With the additional modification in AGN feedback, we find that the supermassive black hole seeding and fixed conditional distribution models create a significant reduction in the scatter in stellar mass at halo masses between 1011–14M⊙. These results suggest that AGN feedback in SAMs acts in a qualitatively different way than feedback implemented in cosmological simulations. Either or both may require substantial modification to match the empirically inferred scatter in the stellar mass–halo mass relation.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ad7b0f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Semianalytic models (SAMs) systematically predict higher-stellar mass scatter at a given halo mass than hydrodynamical simulations and most empirical models. Our goal is to investigate the physical origin of this scatter by exploring modifications to the physics in the SAM Dark Sage. We design two black hole formation models that approximate results from the IllustrisTNG 300-1 hydrodynamical simulation. In the first model, we assign a fixed black hole mass of 106M⊙ to every halo that reaches 1010.5M⊙. In the second model, we disregard any black hole growth as implemented in the standard Dark Sage model. Instead, we force all black hole masses to follow the median z = 0 black hole mass–halo mass relation in IllustrisTNG 300-1 with an imposed fixed scatter. We find that each model on its own does not significantly reduce the scatter in stellar mass. To explore the effects of active galactic nucleus (AGN) feedback in addition to black hole seeding, we replace the native Dark Sage AGN feedback model with a simple model where we turn off cooling for galaxies with black hole masses above 108M⊙. With the additional modification in AGN feedback, we find that the supermassive black hole seeding and fixed conditional distribution models create a significant reduction in the scatter in stellar mass at halo masses between 1011–14M⊙. These results suggest that AGN feedback in SAMs acts in a qualitatively different way than feedback implemented in cosmological simulations. Either or both may require substantial modification to match the empirically inferred scatter in the stellar mass–halo mass relation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为什么半解析模型比宇宙学流体力学模拟预测的恒星质量-光质量关系散度更高?
与流体力学模拟和大多数经验模型相比,半解析模型(SAM)系统地预测了在给定光环质量下更高的恒星质量散射。我们的目标是通过探索对 SAM 黑暗贤者中的物理学进行修改来研究这种散射的物理起源。我们设计了两个近似于 IllustrisTNG 300-1 流体动力模拟结果的黑洞形成模型。在第一个模型中,我们给每个达到1010.5M⊙的光环分配一个固定的黑洞质量,即106M⊙。在第二个模型中,我们不考虑标准暗黑贤者模型中的任何黑洞增长。取而代之的是,我们强制所有黑洞质量都遵循IllustrisTNG 300-1中z = 0黑洞质量-光环质量的中值关系,并施加了一个固定的散度。我们发现,每个模型本身并不能显著减少恒星质量的散度。为了探索黑洞播种之外的活动星系核(AGN)反馈的影响,我们用一个简单的模型取代了原生的暗黑贤者AGN反馈模型,在这个模型中,我们关闭了黑洞质量超过108M⊙的星系的冷却。通过对AGN反馈的额外修改,我们发现超大质量黑洞播种和固定条件分布模型显著减少了光环质量在1011-14M⊙之间时恒星质量的散布。这些结果表明,SAMs 中的 AGN 反馈与宇宙学模拟中的反馈有着本质的不同。要想使恒星质量-光环质量关系中的散射符合经验推断,可能需要对二者或其中之一进行大量修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Expanding the Inventory of Molecule-rich Planetary Nebulae: New Observations of M4-17, Hu 1-1, M1-59, and Na 2 Whole-disk Sampling of Molecular Clouds in M83 Disk2Planet: A Robust and Automated Machine Learning Tool for Parameter Inference in Disk–Planet Systems A Search for Persistent Radio Sources toward Repeating Fast Radio Bursts Discovered by CHIME/FRB Constraining Quasar Feedback from Analysis of the Hydrostatic Equilibrium of the Molecular Gas in Their Host Galaxies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1