Mohamed Almanzalawy, Sameh Nada, Ahmed Elwardany, Marwa Elkady
{"title":"Enhancing diesel engine performance and carbon nanotube yield using high alcohols and ferrocene","authors":"Mohamed Almanzalawy, Sameh Nada, Ahmed Elwardany, Marwa Elkady","doi":"10.1016/j.ces.2024.120964","DOIUrl":null,"url":null,"abstract":"This study investigated the potential of high-alcohol fuels and ferrocene nanoparticles to enhance diesel engine performance and promote carbon nanotube (CNT) formation. Butanol, pentanol, hexanol, heptanol, and octanol were blended with a diesel/biodiesel blend (B30). Ferrocene was added as a catalyst with a concentration of 1770 ppm to optimize CNT formation. Results indicated that high-alcohol fuels, particularly those with longer carbon chains, improved engine efficiency and reduced specific fuel consumption by 10 % and 8 %, respectively. Notably, engine emissions of CO, NO<sub>x</sub>, and smoke opacity decreased by 26 %, 22 %, and 52 %, respectively, with octanol compared to B30. Furthermore, CNTs were successfully synthesized using pentanol, hexanol, and heptanol, but not butanol. A novel particulate trap was designed and fabricated for large-scale collection. The collected samples were subjected to different analyses to confirm the successful production of CNTs, especially with high alcohols, particularly octanol. This research offers insights into the synergistic effects of high-alcohol fuels and ferrocene for improved performance and CNT production.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"231 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2024.120964","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the potential of high-alcohol fuels and ferrocene nanoparticles to enhance diesel engine performance and promote carbon nanotube (CNT) formation. Butanol, pentanol, hexanol, heptanol, and octanol were blended with a diesel/biodiesel blend (B30). Ferrocene was added as a catalyst with a concentration of 1770 ppm to optimize CNT formation. Results indicated that high-alcohol fuels, particularly those with longer carbon chains, improved engine efficiency and reduced specific fuel consumption by 10 % and 8 %, respectively. Notably, engine emissions of CO, NOx, and smoke opacity decreased by 26 %, 22 %, and 52 %, respectively, with octanol compared to B30. Furthermore, CNTs were successfully synthesized using pentanol, hexanol, and heptanol, but not butanol. A novel particulate trap was designed and fabricated for large-scale collection. The collected samples were subjected to different analyses to confirm the successful production of CNTs, especially with high alcohols, particularly octanol. This research offers insights into the synergistic effects of high-alcohol fuels and ferrocene for improved performance and CNT production.
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.