Luiz Henrique Geraldo, Yunling Xu, Gaspard Mouthon, Jessica Furtado, Felipe Saceanu Leser, Levi L. Blazer, Jarrett J. Adams, Sophia Zhang, Lana Zheng, Eric Song, Mark E. Robinson, Jean-Leon Thomas, Sachdev S. Sidhu, Anne Eichmann
{"title":"Monoclonal antibodies that block Roundabout 1 and 2 signaling target pathological ocular neovascularization through myeloid cells","authors":"Luiz Henrique Geraldo, Yunling Xu, Gaspard Mouthon, Jessica Furtado, Felipe Saceanu Leser, Levi L. Blazer, Jarrett J. Adams, Sophia Zhang, Lana Zheng, Eric Song, Mark E. Robinson, Jean-Leon Thomas, Sachdev S. Sidhu, Anne Eichmann","doi":"10.1126/scitranslmed.adn8388","DOIUrl":null,"url":null,"abstract":"Roundabout (ROBO) 1 and 2 are transmembrane receptors that bind secreted SLIT ligands through their extracellular domains (ECDs) and signal through their cytoplasmic domains to modulate the cytoskeleton and regulate cell migration, adhesion, and proliferation. SLIT-ROBO signaling regulates pathological ocular neovascularization, which is a major cause of vision loss worldwide, but pharmacological tools to prevent SLIT-ROBO signaling are lacking. Here, we developed human monoclonal antibodies (mAbs) against the ROBO1 and ROBO2 ECDs. One antibody that inhibited in vitro SLIT2 signaling through ROBO1 and ROBO2 (anti-ROBO1/2) also reduced ocular neovascularization in oxygen-induced retinopathy (OIR) and laser-induced corneal neovascularization (CNV) mouse models in vivo. Single-cell RNA sequencing of OIR retinas revealed that antibody treatment affected several cell types relevant to physiological and pathological angiogenesis, including endothelial cells, pericytes, and a heterogeneous population of myeloid cells. mAb treatment improved blood-retina barrier integrity and prevented pathological pericyte activation in OIR. SLIT-ROBO signaling inhibition prevented pathological activation of myeloid cells and increased neuroprotective myeloid populations normally seen in the developing retina. Microglia/infiltrating macrophage–specific ablation of <jats:italic>Robo1</jats:italic> and <jats:italic>Robo2</jats:italic> or knockout of the downstream effector phosphatidylinositol 3-kinase ( <jats:italic>Pik3cg</jats:italic> ) encoding PI3Kγ in both OIR and CNV models phenocopied anti-ROBO1/2 treatment, further demonstrating the key role of myeloid cells as drivers of ocular neovascular diseases. ROBO1/2 blocking antibodies may thus provide a promising strategy to combat inflammation in blinding eye diseases.","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":"6 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1126/scitranslmed.adn8388","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Roundabout (ROBO) 1 and 2 are transmembrane receptors that bind secreted SLIT ligands through their extracellular domains (ECDs) and signal through their cytoplasmic domains to modulate the cytoskeleton and regulate cell migration, adhesion, and proliferation. SLIT-ROBO signaling regulates pathological ocular neovascularization, which is a major cause of vision loss worldwide, but pharmacological tools to prevent SLIT-ROBO signaling are lacking. Here, we developed human monoclonal antibodies (mAbs) against the ROBO1 and ROBO2 ECDs. One antibody that inhibited in vitro SLIT2 signaling through ROBO1 and ROBO2 (anti-ROBO1/2) also reduced ocular neovascularization in oxygen-induced retinopathy (OIR) and laser-induced corneal neovascularization (CNV) mouse models in vivo. Single-cell RNA sequencing of OIR retinas revealed that antibody treatment affected several cell types relevant to physiological and pathological angiogenesis, including endothelial cells, pericytes, and a heterogeneous population of myeloid cells. mAb treatment improved blood-retina barrier integrity and prevented pathological pericyte activation in OIR. SLIT-ROBO signaling inhibition prevented pathological activation of myeloid cells and increased neuroprotective myeloid populations normally seen in the developing retina. Microglia/infiltrating macrophage–specific ablation of Robo1 and Robo2 or knockout of the downstream effector phosphatidylinositol 3-kinase ( Pik3cg ) encoding PI3Kγ in both OIR and CNV models phenocopied anti-ROBO1/2 treatment, further demonstrating the key role of myeloid cells as drivers of ocular neovascular diseases. ROBO1/2 blocking antibodies may thus provide a promising strategy to combat inflammation in blinding eye diseases.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.