Position Prediction for Space Teleoperation With SAO-CNN-BiGRU-Attention Algorithm

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-11-14 DOI:10.1109/LRA.2024.3498700
Keli Wu;Haifei Chen;Lijun Li;Zhengxiong Liu;Haitao Chang
{"title":"Position Prediction for Space Teleoperation With SAO-CNN-BiGRU-Attention Algorithm","authors":"Keli Wu;Haifei Chen;Lijun Li;Zhengxiong Liu;Haitao Chang","doi":"10.1109/LRA.2024.3498700","DOIUrl":null,"url":null,"abstract":"Robot position is a crucial information flow for space teleoperation, and the existence of time delay makes it actual asynchronous in sending and reception, greatly affecting the telepresence. To address this issue, this letter investigates the position prediction for space teleoperation and proposes an Snow Ablation Optimization (SAO)-CNN-BiGRU-Attention based prediction algorithm. Through prediction, the spatiotemporal synchronization of position information is achieved, thereby improving the telepresence. Firstly, based on the bilateral active estimation delay control framework, the CNN-BiGRU-Attention model is first introduced into position prediction for space teleoperation, where CNN serves for capturing the spatial feature relationship of the past position information, while BiGRU perceives its dynamic changes and combines Attention mechanism to focus on key feature, ultimately ensuring the accuracy of the prediction model. However, hyperparameter selection for the CNN-BiGRU-Attention model directly affects its prediction efficiency, and the custom selection way of hyperparameter obviously cannot guarantee optimality. To solve this problem, the SAO algorithm is introduced into the hyperparameter selection, utilizing its unique dual population mechanism and flexible position update equation to autonomously identify the optimal model hyperparameter and ensure optimal prediction efficiency. Finally, the effectiveness of the SAO-CNN-BiGRU-Attention algorithm was verified through comparative simulation experiments.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11674-11681"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10753063/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Robot position is a crucial information flow for space teleoperation, and the existence of time delay makes it actual asynchronous in sending and reception, greatly affecting the telepresence. To address this issue, this letter investigates the position prediction for space teleoperation and proposes an Snow Ablation Optimization (SAO)-CNN-BiGRU-Attention based prediction algorithm. Through prediction, the spatiotemporal synchronization of position information is achieved, thereby improving the telepresence. Firstly, based on the bilateral active estimation delay control framework, the CNN-BiGRU-Attention model is first introduced into position prediction for space teleoperation, where CNN serves for capturing the spatial feature relationship of the past position information, while BiGRU perceives its dynamic changes and combines Attention mechanism to focus on key feature, ultimately ensuring the accuracy of the prediction model. However, hyperparameter selection for the CNN-BiGRU-Attention model directly affects its prediction efficiency, and the custom selection way of hyperparameter obviously cannot guarantee optimality. To solve this problem, the SAO algorithm is introduced into the hyperparameter selection, utilizing its unique dual population mechanism and flexible position update equation to autonomously identify the optimal model hyperparameter and ensure optimal prediction efficiency. Finally, the effectiveness of the SAO-CNN-BiGRU-Attention algorithm was verified through comparative simulation experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 SAO-CNN-BiGRU-Attention 算法进行太空远程操作的位置预测
机器人位置是太空远程操作的关键信息流,时延的存在使其实际发送和接收不同步,极大地影响了远程呈现。针对这一问题,本文研究了空间遥感操作的位置预测,并提出了一种基于雪消融优化(SAO)-CNN-BiGRU-Attention 的预测算法。通过预测,实现了位置信息的时空同步,从而提高了远程呈现效果。首先,基于双边主动估计延迟控制框架,将 CNN-BiGRU-Attention 模型首次引入空间遥操作的位置预测中,其中 CNN 用于捕捉过去位置信息的空间特征关系,而 BiGRU 则感知其动态变化并结合 Attention 机制关注关键特征,最终确保预测模型的准确性。然而,CNN-BiGRU-Attention 模型的超参数选择直接影响其预测效率,而自定义选择超参数的方式显然不能保证最优。为解决这一问题,在超参数选择中引入了 SAO 算法,利用其独特的双种群机制和灵活的位置更新方程,自主确定最优模型超参数,确保最优预测效率。最后,通过对比模拟实验验证了 SAO-CNN-BiGRU-Attention 算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Correction To: “Design Models and Performance Analysis for a Novel Shape Memory Alloy-Actuated Wearable Hand Exoskeleton for Rehabilitation” A Diffusion-Based Data Generator for Training Object Recognition Models in Ultra-Range Distance Position Prediction for Space Teleoperation With SAO-CNN-BiGRU-Attention Algorithm Integrated Grasping Controller Leveraging Optical Proximity Sensors for Simultaneous Contact, Impact Reduction, and Force Control Single-Motor-Driven (4 + 2)-Fingered Robotic Gripper Capable of Expanding the Workable Space in the Extremely Confined Environment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1