Sliding-Mode-Based Output Feedback Neural Network Control for Electro-Hydraulic Actuator Subject to Unknown Dynamics and Uncertainties

IF 8.6 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS IEEE Transactions on Systems Man Cybernetics-Systems Pub Date : 2024-09-23 DOI:10.1109/TSMC.2024.3460191
Hoai Vu Anh Truong;Wan Kyun Chung
{"title":"Sliding-Mode-Based Output Feedback Neural Network Control for Electro-Hydraulic Actuator Subject to Unknown Dynamics and Uncertainties","authors":"Hoai Vu Anh Truong;Wan Kyun Chung","doi":"10.1109/TSMC.2024.3460191","DOIUrl":null,"url":null,"abstract":"Unstructured dynamics, un-modeled parameters, and uncertainties in electro-hydraulic servo-valve-controlled actuators (EHSAs) bring difficulty in designing controllers for output tracking performance with stability and robustness satisfactions. Therefore, this article proposes an output feedback-based control for position regulation subject to fully unknown system behavior and uncertainties. With this idea, a coordinately transformed canonical system is utilized where all mismatched/matched uncertainties are lumped into one term with unknown dynamics. Then, a radial basis function neural network (RBFNN) with a norm of weighting vector estimation combined with a time-delayed estimation (TDE) is employed to effectively compensate for the system behavior. Accordingly, a second-order sliding-mode-based output feedback control is conducted to avoid following the step-by-step backstepping control (BSC) design. Interestingly, the proposed methodology requires only the measured output for the control law implementation with only one estimated variable for the system dynamics compensation due to using the hybrid RBF-based TDE (RBF-TDE). Moreover, to lower this approximated error, a modified sliding-mode-based nonlinear disturbance observer (DOB) is extensively involved. The closed-loop system stability is mathematically proven through the Lyapunov theorem with simulation and experiment on EHSA protocols to realize the effectiveness of the proposed algorithm.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"54 12","pages":"7884-7896"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10685448/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Unstructured dynamics, un-modeled parameters, and uncertainties in electro-hydraulic servo-valve-controlled actuators (EHSAs) bring difficulty in designing controllers for output tracking performance with stability and robustness satisfactions. Therefore, this article proposes an output feedback-based control for position regulation subject to fully unknown system behavior and uncertainties. With this idea, a coordinately transformed canonical system is utilized where all mismatched/matched uncertainties are lumped into one term with unknown dynamics. Then, a radial basis function neural network (RBFNN) with a norm of weighting vector estimation combined with a time-delayed estimation (TDE) is employed to effectively compensate for the system behavior. Accordingly, a second-order sliding-mode-based output feedback control is conducted to avoid following the step-by-step backstepping control (BSC) design. Interestingly, the proposed methodology requires only the measured output for the control law implementation with only one estimated variable for the system dynamics compensation due to using the hybrid RBF-based TDE (RBF-TDE). Moreover, to lower this approximated error, a modified sliding-mode-based nonlinear disturbance observer (DOB) is extensively involved. The closed-loop system stability is mathematically proven through the Lyapunov theorem with simulation and experiment on EHSA protocols to realize the effectiveness of the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于滑动模式输出反馈神经网络的未知动态和不确定性电液推杆控制装置
电液伺服阀控执行器(EHSA)中的非结构化动态、未建模参数和不确定性给设计出满足稳定性和鲁棒性的输出跟踪性能的控制器带来了困难。因此,本文针对完全未知的系统行为和不确定性,提出了一种基于输出反馈的位置调节控制方法。根据这一思路,利用了一个协调变换的典型系统,将所有不匹配/匹配的不确定性归结为一个未知动态项。然后,利用径向基函数神经网络(RBFNN)的加权向量估计规范与延时估计(TDE)相结合,对系统行为进行有效补偿。相应地,还采用了基于二阶滑动模式的输出反馈控制,以避免采用步进式反步进控制(BSC)设计。有趣的是,由于使用了基于 RBF 的混合 TDE (RBF-TDE),建议的方法只需要测量输出就能实现控制法则,而系统动态补偿只需要一个估计变量。此外,为了降低近似误差,还广泛采用了改进的基于滑动模式的非线性扰动观测器(DOB)。通过对 EHSA 协议进行仿真和实验,利用 Lyapunov 定理从数学上证明了闭环系统的稳定性,从而实现了所提算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
期刊最新文献
Table of Contents Table of Contents Introducing IEEE Collabratec Information For Authors IEEE Transactions on Systems, Man, and Cybernetics publication information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1