FracGM: A Fast Fractional Programming Technique for Geman-McClure Robust Estimator

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2024-11-11 DOI:10.1109/LRA.2024.3495372
Bang-Shien Chen;Yu-Kai Lin;Jian-Yu Chen;Chih-Wei Huang;Jann-Long Chern;Ching-Cherng Sun
{"title":"FracGM: A Fast Fractional Programming Technique for Geman-McClure Robust Estimator","authors":"Bang-Shien Chen;Yu-Kai Lin;Jian-Yu Chen;Chih-Wei Huang;Jann-Long Chern;Ching-Cherng Sun","doi":"10.1109/LRA.2024.3495372","DOIUrl":null,"url":null,"abstract":"Robust estimation is essential in computer vision, robotics, and navigation, aiming to minimize the impact of outlier measurements for improved accuracy. We present a fast algorithm for Geman-McClure robust estimation, FracGM, leveraging fractional programming techniques. This solver reformulates the original non-convex fractional problem to a convex dual problem and a linear equation system, iteratively solving them in an alternating optimization pattern. Compared to graduated non-convexity approaches, this strategy exhibits a faster convergence rate and better outlier rejection capability. In addition, the global optimality of the proposed solver can be guaranteed under given conditions. We demonstrate the proposed FracGM solver with Wahba's rotation problem and 3-D point-cloud registration along with relaxation pre-processing and projection post-processing. Compared to state-of-the-art algorithms, when the outlier rates increase from 20% to 80%, FracGM shows 53% and 88% lower rotation and translation increases. In real-world scenarios, FracGM achieves better results in 13 out of 18 outcomes, while having a 19.43% improvement in the computation time.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"9 12","pages":"11666-11673"},"PeriodicalIF":4.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10749993/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Robust estimation is essential in computer vision, robotics, and navigation, aiming to minimize the impact of outlier measurements for improved accuracy. We present a fast algorithm for Geman-McClure robust estimation, FracGM, leveraging fractional programming techniques. This solver reformulates the original non-convex fractional problem to a convex dual problem and a linear equation system, iteratively solving them in an alternating optimization pattern. Compared to graduated non-convexity approaches, this strategy exhibits a faster convergence rate and better outlier rejection capability. In addition, the global optimality of the proposed solver can be guaranteed under given conditions. We demonstrate the proposed FracGM solver with Wahba's rotation problem and 3-D point-cloud registration along with relaxation pre-processing and projection post-processing. Compared to state-of-the-art algorithms, when the outlier rates increase from 20% to 80%, FracGM shows 53% and 88% lower rotation and translation increases. In real-world scenarios, FracGM achieves better results in 13 out of 18 outcomes, while having a 19.43% improvement in the computation time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FracGM:用于 Geman-McClure 稳健估计器的快速分式编程技术
稳健估计在计算机视觉、机器人和导航领域至关重要,其目的是最大限度地减少离群测量的影响,从而提高精度。我们提出了一种利用分数编程技术进行 Geman-McClure 稳健估计的快速算法 FracGM。该求解器将原始的非凸分式问题重新表述为一个凸对偶问题和一个线性方程组,并以交替优化模式对其进行迭代求解。与传统的非凸方法相比,这种策略收敛速度更快,剔除离群值的能力更强。此外,在给定条件下,还能保证所提求解器的全局最优性。我们用 Wahba 旋转问题和三维点云注册以及松弛预处理和投影后处理演示了所提出的 FracGM 求解器。与最先进的算法相比,当离群率从 20% 增加到 80% 时,FracGM 的旋转和平移增加率分别降低了 53% 和 88%。在实际应用场景中,FracGM 在 18 个结果中的 13 个取得了更好的结果,同时计算时间缩短了 19.43%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Correction To: “Design Models and Performance Analysis for a Novel Shape Memory Alloy-Actuated Wearable Hand Exoskeleton for Rehabilitation” NavTr: Object-Goal Navigation With Learnable Transformer Queries A Diffusion-Based Data Generator for Training Object Recognition Models in Ultra-Range Distance Position Prediction for Space Teleoperation With SAO-CNN-BiGRU-Attention Algorithm MR-ULINS: A Tightly-Coupled UWB-LiDAR-Inertial Estimator With Multi-Epoch Outlier Rejection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1