Non-hemolytic peptide classification using a quantum support vector machine

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Quantum Information Processing Pub Date : 2024-11-20 DOI:10.1007/s11128-024-04540-5
Shengxin Zhuang, John Tanner, Yusen Wu, Du Huynh, Wei Liu, Xavier Cadet, Nicolas Fontaine, Philippe Charton, Cedric Damour, Frederic Cadet, Jingbo Wang
{"title":"Non-hemolytic peptide classification using a quantum support vector machine","authors":"Shengxin Zhuang,&nbsp;John Tanner,&nbsp;Yusen Wu,&nbsp;Du Huynh,&nbsp;Wei Liu,&nbsp;Xavier Cadet,&nbsp;Nicolas Fontaine,&nbsp;Philippe Charton,&nbsp;Cedric Damour,&nbsp;Frederic Cadet,&nbsp;Jingbo Wang","doi":"10.1007/s11128-024-04540-5","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum machine learning (QML) is one of the most promising applications of quantum computation. Despite the theoretical advantages, it is still unclear exactly what kind of problems QML techniques can be used for, given the current limitation of noisy intermediate-scale quantum devices. In this work, we apply the well-studied quantum support vector machine (QSVM), a powerful QML model, to a binary classification task which classifies peptides as either <i>hemolytic</i> or <i>non-hemolytic</i>. Using three peptide datasets, we apply and contrast the performance of the QSVM with a number of popular classical SVMs, out of which the QSVM performs best overall. The contributions of this work include: (i) the first application of the QSVM to this specific peptide classification task and (ii) empirical results showing that the QSVM is capable of outperforming many (and possibly all) classical SVMs on this classification task. This foundational work provides insight into possible applications of QML in computational biology and may facilitate safer therapeutic developments by improving our ability to identify hemolytic properties in peptides. \n</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-024-04540-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04540-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum machine learning (QML) is one of the most promising applications of quantum computation. Despite the theoretical advantages, it is still unclear exactly what kind of problems QML techniques can be used for, given the current limitation of noisy intermediate-scale quantum devices. In this work, we apply the well-studied quantum support vector machine (QSVM), a powerful QML model, to a binary classification task which classifies peptides as either hemolytic or non-hemolytic. Using three peptide datasets, we apply and contrast the performance of the QSVM with a number of popular classical SVMs, out of which the QSVM performs best overall. The contributions of this work include: (i) the first application of the QSVM to this specific peptide classification task and (ii) empirical results showing that the QSVM is capable of outperforming many (and possibly all) classical SVMs on this classification task. This foundational work provides insight into possible applications of QML in computational biology and may facilitate safer therapeutic developments by improving our ability to identify hemolytic properties in peptides.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用量子支持向量机进行非溶血性肽分类
量子机器学习(QML)是量子计算最有前途的应用之一。尽管量子机器学习具有理论上的优势,但鉴于目前噪声中等规模量子设备的限制,量子机器学习技术究竟能用于解决什么样的问题仍不清楚。在这项工作中,我们将研究得很透彻的量子支持向量机(QSVM)这一强大的 QML 模型应用到二元分类任务中,将肽分为溶血性和非溶血性。通过使用三个肽数据集,我们将 QSVM 的性能与一些流行的经典 SVM 进行了对比,其中 QSVM 的总体性能最佳。这项工作的贡献包括(i) 首次将 QSVM 应用于这一特定的多肽分类任务;(ii) 经验结果表明 QSVM 在这一分类任务中的表现优于许多(可能是所有)经典 SVM。这项基础性工作为 QML 在计算生物学中的可能应用提供了洞察力,并通过提高我们识别多肽溶血特性的能力,促进更安全的治疗开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
期刊最新文献
New q-ary quantum MDS codes of length strictly larger than \(q+1\) Polygamy relations for tripartite and multipartite quantum systems Dynamic quantum session key agreement protocol based on d-level mutually unbiased bases Characterizing bipartite entanglement via the ergotropic gap Quantum deep learning in Parkinson’s disease prediction using hybrid quantum–classical convolution neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1