Zeyuan Cui, Rui Chen, Tai Li, Bingchen Zou, Gui Geng, Yao Xu, Piergiorgio Stevanato, Lihua Yu, Vadim N. Nurminsky, Jiahui Liu, Yuguang Wang
{"title":"Arbuscular Mycorrhizal Fungi Enhance Tolerance to Drought Stress by Altering the Physiological and Biochemical Characteristics of Sugar Beet","authors":"Zeyuan Cui, Rui Chen, Tai Li, Bingchen Zou, Gui Geng, Yao Xu, Piergiorgio Stevanato, Lihua Yu, Vadim N. Nurminsky, Jiahui Liu, Yuguang Wang","doi":"10.1007/s12355-024-01500-2","DOIUrl":null,"url":null,"abstract":"<div><p>Global warming is contributing to an increase in the frequency of extreme climate events, leading to more frequent droughts that pose significant abiotic stressors affecting the growth and yield of sugar beet. To address the detrimental effects of drought stress on sugar beet seedlings, this study simulated a drought environment and examined the impact of arbuscular mycorrhizal fungi (AMF) symbiosis on seedling growth. The findings revealed that AMF inoculation under drought conditions enhanced the photosynthesis rate and increased the content of photosynthetic pigments in the leaves of sugar beet. Additionally, it effectively mitigated cell membrane damage in the seedlings, elevated the levels of osmoregulatory substances, and enhanced antioxidant enzyme activities in both leaves and roots. The inoculation of AMF regulates the physiological processes associated with sugar beet growth, alleviates the adverse effects of drought stress, and promotes seedling development. Consequently, AMF can be regarded as a valuable bioregulator in sugar beet cultivation under drought conditions, providing significant practical benefits for improving sugar beet yield.</p></div>","PeriodicalId":781,"journal":{"name":"Sugar Tech","volume":"26 5","pages":"1377 - 1392"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sugar Tech","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12355-024-01500-2","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Global warming is contributing to an increase in the frequency of extreme climate events, leading to more frequent droughts that pose significant abiotic stressors affecting the growth and yield of sugar beet. To address the detrimental effects of drought stress on sugar beet seedlings, this study simulated a drought environment and examined the impact of arbuscular mycorrhizal fungi (AMF) symbiosis on seedling growth. The findings revealed that AMF inoculation under drought conditions enhanced the photosynthesis rate and increased the content of photosynthetic pigments in the leaves of sugar beet. Additionally, it effectively mitigated cell membrane damage in the seedlings, elevated the levels of osmoregulatory substances, and enhanced antioxidant enzyme activities in both leaves and roots. The inoculation of AMF regulates the physiological processes associated with sugar beet growth, alleviates the adverse effects of drought stress, and promotes seedling development. Consequently, AMF can be regarded as a valuable bioregulator in sugar beet cultivation under drought conditions, providing significant practical benefits for improving sugar beet yield.
期刊介绍:
The journal Sugar Tech is planned with every aim and objectives to provide a high-profile and updated research publications, comments and reviews on the most innovative, original and rigorous development in agriculture technologies for better crop improvement and production of sugar crops (sugarcane, sugar beet, sweet sorghum, Stevia, palm sugar, etc), sugar processing, bioethanol production, bioenergy, value addition and by-products. Inter-disciplinary studies of fundamental problems on the subjects are also given high priority. Thus, in addition to its full length and short papers on original research, the journal also covers regular feature articles, reviews, comments, scientific correspondence, etc.