Enhancing keratoconus detection with transformer technology and multi-source integration

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence Review Pub Date : 2024-11-21 DOI:10.1007/s10462-024-11016-6
Osama Ismael
{"title":"Enhancing keratoconus detection with transformer technology and multi-source integration","authors":"Osama Ismael","doi":"10.1007/s10462-024-11016-6","DOIUrl":null,"url":null,"abstract":"<div><p>Keratoconus is a progressive eye disease characterized by the thinning and conical distortion of the cornea, leading to visual impairment. Early and accurate detection is essential for effective management and treatment. Traditional diagnostic methods, relying primarily on corneal topography, often fail to detect early-stage keratoconus due to their subjective nature and limited scope. In this research, we present a novel multi-source detection approach utilizing transformer technology to predict keratoconus progression more accurately. By integrating and analyzing diverse data sources, including corneal topography, aberrometry, pachymetry, and biomechanical properties, our method captures subtle changes indicative of disease progression. Transformer networks, known for their capability to model complex dependencies in data, are employed to handle the multimodal datasets effectively. Experimental results demonstrate that our approach significantly outperforms existing methods, such as SVM-based, Random Forests-based, and CNN-based models, in terms of accuracy, precision, recall, and F-score. Moreover, the proposed system exhibits lower execution times, highlighting its efficiency in clinical settings. This innovative methodology holds the potential to revolutionize keratoconus management by enabling earlier and more precise interventions, ultimately enhancing patient outcomes and contributing significantly to both the medical and machine learning communities.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11016-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11016-6","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Keratoconus is a progressive eye disease characterized by the thinning and conical distortion of the cornea, leading to visual impairment. Early and accurate detection is essential for effective management and treatment. Traditional diagnostic methods, relying primarily on corneal topography, often fail to detect early-stage keratoconus due to their subjective nature and limited scope. In this research, we present a novel multi-source detection approach utilizing transformer technology to predict keratoconus progression more accurately. By integrating and analyzing diverse data sources, including corneal topography, aberrometry, pachymetry, and biomechanical properties, our method captures subtle changes indicative of disease progression. Transformer networks, known for their capability to model complex dependencies in data, are employed to handle the multimodal datasets effectively. Experimental results demonstrate that our approach significantly outperforms existing methods, such as SVM-based, Random Forests-based, and CNN-based models, in terms of accuracy, precision, recall, and F-score. Moreover, the proposed system exhibits lower execution times, highlighting its efficiency in clinical settings. This innovative methodology holds the potential to revolutionize keratoconus management by enabling earlier and more precise interventions, ultimately enhancing patient outcomes and contributing significantly to both the medical and machine learning communities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用变压器技术和多源集成增强角膜病检测能力
角膜炎是一种渐进性眼病,其特征是角膜变薄和圆锥形变形,从而导致视力受损。早期准确的检测对于有效的管理和治疗至关重要。传统的诊断方法主要依赖角膜地形图,由于其主观性和范围有限,往往无法检测出早期角膜炎。在这项研究中,我们提出了一种利用变压器技术的新型多源检测方法,以更准确地预测角膜病的进展。通过整合和分析包括角膜地形图、像差计、测厚计和生物力学特性在内的各种数据源,我们的方法捕捉到了表明疾病进展的微妙变化。变压器网络以其在数据中建立复杂依赖关系模型的能力而著称,我们采用它来有效处理多模态数据集。实验结果表明,我们的方法在准确度、精确度、召回率和 F 分数方面明显优于现有方法,如基于 SVM、基于随机森林和基于 CNN 的模型。此外,所提出的系统执行时间更短,突出了其在临床环境中的效率。这种创新方法有望通过更早、更精确的干预彻底改变角膜病的管理,最终提高患者的治疗效果,并为医学界和机器学习界做出重大贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
期刊最新文献
Enhancing keratoconus detection with transformer technology and multi-source integration Federated learning design and functional models: survey A systematic literature review of recent advances on context-aware recommender systems Escape: an optimization method based on crowd evacuation behaviors A multi-strategy boosted bald eagle search algorithm for global optimization and constrained engineering problems: case study on MLP classification problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1