Formulation, Evaluation, Factorial Optimization, and In-Silico Study of Eplerenone Loaded Pectin Nanoparticles: A New Approach to the Proliferation of Human Skin Fibroblasts for Wound Healing
Radwa M. A. Abd-Elal, Rehab H. Abd El-Aleam, Noha I. Elsherif
{"title":"Formulation, Evaluation, Factorial Optimization, and In-Silico Study of Eplerenone Loaded Pectin Nanoparticles: A New Approach to the Proliferation of Human Skin Fibroblasts for Wound Healing","authors":"Radwa M. A. Abd-Elal, Rehab H. Abd El-Aleam, Noha I. Elsherif","doi":"10.1007/s12247-024-09885-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>Repurposing Eplerenone (EPL) for wound healing through in silico molecular docking to explore its therapeutic potential beyond its traditional use (antihypertensive drug). In this study, for a first time we investigated the potential of EPL- loaded pectin nanoparticles to enhance human skin proliferation.</p><h3>Methods</h3><p>Ionotropic gelation method was used for preparing these EPL-loaded PN using calcium chloride as a cross-linker. Design® Expert software was used to utilize a full factorial 2<sup>3</sup> design, where the selected factors were the pectin concentration (X<sub>1</sub>), EPL amount (X<sub>2</sub>), and pectin: calcium chloride concentration (X<sub>3</sub>). The selected responses were the EPL entrapment efficiency percentage, particle size and zeta potential for determining the optimum formula for further studies such as <i>in-vitro</i> release studies, transmission electron microscopy (TEM), X-ray diffraction, cell culture study and <i>in-vitro</i> evaluation on human skin fibroblast proliferation cell.</p><h3>Results</h3><p>The selected system demonstrated high entrapment efficiency (80.56 ± 0.62%), a particle size of 509.1 ± 45.5 nm, and good zeta potential value (-21.73 ± 2.1 mV). A spherical morphology with no aggregation using TEM and amorphization of the crystalline drug in X-ray diffraction were obtained. The Sulfo-Rhodamine B assay was applied for its effect on cell viability on human skin cells, and the selected concentration was 50 μg/mL.</p><h3>Conclusions</h3><p>The wound healing assay on human skin fibroblasts using scratch wound technique showed the superiority of EPL on wound healing; suggesting its promising effect in enhancing skin healing and tissue regeneration. Moreover, pectin activity as a wound healing accelerator, promoting a synergistic effect.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":656,"journal":{"name":"Journal of Pharmaceutical Innovation","volume":"19 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmaceutical Innovation","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12247-024-09885-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Repurposing Eplerenone (EPL) for wound healing through in silico molecular docking to explore its therapeutic potential beyond its traditional use (antihypertensive drug). In this study, for a first time we investigated the potential of EPL- loaded pectin nanoparticles to enhance human skin proliferation.
Methods
Ionotropic gelation method was used for preparing these EPL-loaded PN using calcium chloride as a cross-linker. Design® Expert software was used to utilize a full factorial 23 design, where the selected factors were the pectin concentration (X1), EPL amount (X2), and pectin: calcium chloride concentration (X3). The selected responses were the EPL entrapment efficiency percentage, particle size and zeta potential for determining the optimum formula for further studies such as in-vitro release studies, transmission electron microscopy (TEM), X-ray diffraction, cell culture study and in-vitro evaluation on human skin fibroblast proliferation cell.
Results
The selected system demonstrated high entrapment efficiency (80.56 ± 0.62%), a particle size of 509.1 ± 45.5 nm, and good zeta potential value (-21.73 ± 2.1 mV). A spherical morphology with no aggregation using TEM and amorphization of the crystalline drug in X-ray diffraction were obtained. The Sulfo-Rhodamine B assay was applied for its effect on cell viability on human skin cells, and the selected concentration was 50 μg/mL.
Conclusions
The wound healing assay on human skin fibroblasts using scratch wound technique showed the superiority of EPL on wound healing; suggesting its promising effect in enhancing skin healing and tissue regeneration. Moreover, pectin activity as a wound healing accelerator, promoting a synergistic effect.
期刊介绍:
The Journal of Pharmaceutical Innovation (JPI), is an international, multidisciplinary peer-reviewed scientific journal dedicated to publishing high quality papers emphasizing innovative research and applied technologies within the pharmaceutical and biotechnology industries. JPI''s goal is to be the premier communication vehicle for the critical body of knowledge that is needed for scientific evolution and technical innovation, from R&D to market. Topics will fall under the following categories:
Materials science,
Product design,
Process design, optimization, automation and control,
Facilities; Information management,
Regulatory policy and strategy,
Supply chain developments ,
Education and professional development,
Journal of Pharmaceutical Innovation publishes four issues a year.