Maike Berger, Alexandra Markus, Stefan Palkovits, Prof. Regina Palkovits
{"title":"Electrocatalytic Performance and Kinetic Behavior of Anion-Intercalated Borate-Based NiFe LDH in Alkaline OER","authors":"Maike Berger, Alexandra Markus, Stefan Palkovits, Prof. Regina Palkovits","doi":"10.1002/celc.202400457","DOIUrl":null,"url":null,"abstract":"<p>The synthesis of hydrogen <i>via</i> water electrolysis is an important step towards resolving the energy crisis and impeding global warming, as hydrogen can be used as a green energy carrier. The oxygen evolution as one half-cell reaction (OER) is currently limiting efficient water splitting due to kinetic inhibition as well as a complex mechanism, causing a large overpotential. Nickel-iron layered double hydroxides (LDH) were found to be suitable OER catalysts, as they are cost effective, stable and highly active. This work focuses on the intercalation of different organic and inorganic borates into the LDH interlayers to study their influence on OER. Besides activity and stability measurements, three borate candidates were chosen for a kinetic study, including steady-state Tafel analysis and reaction order plots. It was found that the Bockris pathway with the second step as rate-determining step was predominant for all three catalysts. Of all candidates, the intercalation of borate resulted in the highest performance, which was associated with a high reducibility affecting the active metal sites.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 22","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400457","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400457","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of hydrogen via water electrolysis is an important step towards resolving the energy crisis and impeding global warming, as hydrogen can be used as a green energy carrier. The oxygen evolution as one half-cell reaction (OER) is currently limiting efficient water splitting due to kinetic inhibition as well as a complex mechanism, causing a large overpotential. Nickel-iron layered double hydroxides (LDH) were found to be suitable OER catalysts, as they are cost effective, stable and highly active. This work focuses on the intercalation of different organic and inorganic borates into the LDH interlayers to study their influence on OER. Besides activity and stability measurements, three borate candidates were chosen for a kinetic study, including steady-state Tafel analysis and reaction order plots. It was found that the Bockris pathway with the second step as rate-determining step was predominant for all three catalysts. Of all candidates, the intercalation of borate resulted in the highest performance, which was associated with a high reducibility affecting the active metal sites.
通过电解水合成氢气是解决能源危机和阻止全球变暖的重要一步,因为氢气可用作绿色能源载体。目前,由于动力学抑制和复杂的机理,氧进化作为一个半电池反应(OER)导致过电势过大,从而限制了高效的水分离。研究发现,镍铁层状双氢氧化物(LDH)是合适的 OER 催化剂,因为它们具有成本效益、稳定性和高活性。这项工作的重点是在 LDH 夹层中插层不同的有机和无机硼酸盐,以研究它们对 OER 的影响。除了活性和稳定性测量之外,还选择了三种候选硼酸盐进行动力学研究,包括稳态塔菲尔分析和反应顺序图。研究发现,所有三种催化剂都以第二步为速率决定步骤的 Bockris 途径为主。在所有候选催化剂中,硼酸盐的插层催化剂性能最高,这与影响活性金属位点的高还原性有关。
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.