{"title":"Modulation of the Nernst Thermoelectrics by Regulating the Anomalous Hall and Nernst Angles.","authors":"Meng Lyu, Junyan Liu, Jianlei Shen, Shen Zhang, Yang Liu, Jinying Yang, Yibo Wang, Yiting Feng, Binbin Wang, Hongxiang Wei, Enke Liu","doi":"10.1002/advs.202411702","DOIUrl":null,"url":null,"abstract":"<p><p>The large anomalous Nernst effect in magnetic Weyl semimetals is one of the most intriguing transport phenomena, which draws significant attention for its potential applications in topological thermoelectrics. Despite frequent reports of substantial anomalous Nernst conductivity (ANC), methods to optimize Nernst thermoelectrics remain limited. The research reveals that the magnitude of the ANC is directly related to the sum of the anomalous Nernst and Hall angles. While the sign of the anomalous Hall angle is relatively stable in a certain material, the sign of the anomalous Nernst angle can be intrinsically tuned. Therefore, the ANC can be effectively optimized by regulating these angles to work in concert. This finding is verified by experimental modulation from iron-doped magnetic topological material Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub>. Additionally, a robust TlnT scaling law of the ANC over the temperature range of 40 to 140 K is observed in all studied samples, suggesting an intrinsic origin of the ANC. Considering the common opposite sign of the anomalous Nernst and Hall angles in many magnetic topological materials, the research offers an applicable scheme for optimizing the Nernst thermoelectrics.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2411702"},"PeriodicalIF":14.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202411702","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The large anomalous Nernst effect in magnetic Weyl semimetals is one of the most intriguing transport phenomena, which draws significant attention for its potential applications in topological thermoelectrics. Despite frequent reports of substantial anomalous Nernst conductivity (ANC), methods to optimize Nernst thermoelectrics remain limited. The research reveals that the magnitude of the ANC is directly related to the sum of the anomalous Nernst and Hall angles. While the sign of the anomalous Hall angle is relatively stable in a certain material, the sign of the anomalous Nernst angle can be intrinsically tuned. Therefore, the ANC can be effectively optimized by regulating these angles to work in concert. This finding is verified by experimental modulation from iron-doped magnetic topological material Co3Sn2S2. Additionally, a robust TlnT scaling law of the ANC over the temperature range of 40 to 140 K is observed in all studied samples, suggesting an intrinsic origin of the ANC. Considering the common opposite sign of the anomalous Nernst and Hall angles in many magnetic topological materials, the research offers an applicable scheme for optimizing the Nernst thermoelectrics.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.