Modulation of the Nernst Thermoelectrics by Regulating the Anomalous Hall and Nernst Angles.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2024-11-21 DOI:10.1002/advs.202411702
Meng Lyu, Junyan Liu, Jianlei Shen, Shen Zhang, Yang Liu, Jinying Yang, Yibo Wang, Yiting Feng, Binbin Wang, Hongxiang Wei, Enke Liu
{"title":"Modulation of the Nernst Thermoelectrics by Regulating the Anomalous Hall and Nernst Angles.","authors":"Meng Lyu, Junyan Liu, Jianlei Shen, Shen Zhang, Yang Liu, Jinying Yang, Yibo Wang, Yiting Feng, Binbin Wang, Hongxiang Wei, Enke Liu","doi":"10.1002/advs.202411702","DOIUrl":null,"url":null,"abstract":"<p><p>The large anomalous Nernst effect in magnetic Weyl semimetals is one of the most intriguing transport phenomena, which draws significant attention for its potential applications in topological thermoelectrics. Despite frequent reports of substantial anomalous Nernst conductivity (ANC), methods to optimize Nernst thermoelectrics remain limited. The research reveals that the magnitude of the ANC is directly related to the sum of the anomalous Nernst and Hall angles. While the sign of the anomalous Hall angle is relatively stable in a certain material, the sign of the anomalous Nernst angle can be intrinsically tuned. Therefore, the ANC can be effectively optimized by regulating these angles to work in concert. This finding is verified by experimental modulation from iron-doped magnetic topological material Co<sub>3</sub>Sn<sub>2</sub>S<sub>2</sub>. Additionally, a robust TlnT scaling law of the ANC over the temperature range of 40 to 140 K is observed in all studied samples, suggesting an intrinsic origin of the ANC. Considering the common opposite sign of the anomalous Nernst and Hall angles in many magnetic topological materials, the research offers an applicable scheme for optimizing the Nernst thermoelectrics.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2411702"},"PeriodicalIF":14.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202411702","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The large anomalous Nernst effect in magnetic Weyl semimetals is one of the most intriguing transport phenomena, which draws significant attention for its potential applications in topological thermoelectrics. Despite frequent reports of substantial anomalous Nernst conductivity (ANC), methods to optimize Nernst thermoelectrics remain limited. The research reveals that the magnitude of the ANC is directly related to the sum of the anomalous Nernst and Hall angles. While the sign of the anomalous Hall angle is relatively stable in a certain material, the sign of the anomalous Nernst angle can be intrinsically tuned. Therefore, the ANC can be effectively optimized by regulating these angles to work in concert. This finding is verified by experimental modulation from iron-doped magnetic topological material Co3Sn2S2. Additionally, a robust TlnT scaling law of the ANC over the temperature range of 40 to 140 K is observed in all studied samples, suggesting an intrinsic origin of the ANC. Considering the common opposite sign of the anomalous Nernst and Hall angles in many magnetic topological materials, the research offers an applicable scheme for optimizing the Nernst thermoelectrics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过调节反常霍尔角和奈氏角调制奈氏热电。
磁性韦尔半金属中的大反常奈氏效应是最引人入胜的传输现象之一,它在拓扑热电中的潜在应用引起了人们的极大关注。尽管经常有报道称存在巨大的反常奈氏电导率(ANC),但优化奈氏热电的方法仍然有限。研究发现,反常奈氏电导率的大小与反常奈氏角和霍尔角的总和直接相关。反常霍尔角的符号在某种材料中相对稳定,而反常诺尔角的符号则可以进行内在调整。因此,通过调节这些角度使其协同工作,可以有效地优化 ANC。这一发现通过掺铁磁性拓扑材料 Co3Sn2S2 的实验调制得到了验证。此外,在所有研究的样品中,在 40 至 140 K 的温度范围内都观察到了 ANC 的稳健 TlnT 缩放定律,这表明 ANC 有其内在的起源。考虑到许多磁性拓扑材料中的反常奈氏角和霍尔角的符号通常相反,该研究为优化奈氏热电提供了一种适用的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
Giant Power Output from Ionic/electronic Hybrid Nanocomposite Thermoelectric Converter Under Constant Temperature Gradient. A Study on the Inflammatory Response of the Brain in Neurosyphilis. Cancer Cell-Derived Exosomal miR-500a-3p Modulates Hepatic Stellate Cell Activation and the Immunosuppressive Microenvironment. CRISPR/Cas Enzyme Catalysis in Liquid-Liquid Phase-Separated Systems. Deciphering Design of Aggregation-Induced Emission Materials by Data Interpretation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1