Scalable Slot-Die Coating of Passivation Layers for Improved Performance of Perovskite Solar Cell Modules.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-11-20 DOI:10.1002/smtd.202401244
Yanqing Zhu, Yuxi Zhang, Min Hu, Li Wan, Wenchao Huang, Jingyuan Chu, Yuying Hao, Yi-Bing Cheng, Alexandr N Simonov, Jianfeng Lu
{"title":"Scalable Slot-Die Coating of Passivation Layers for Improved Performance of Perovskite Solar Cell Modules.","authors":"Yanqing Zhu, Yuxi Zhang, Min Hu, Li Wan, Wenchao Huang, Jingyuan Chu, Yuying Hao, Yi-Bing Cheng, Alexandr N Simonov, Jianfeng Lu","doi":"10.1002/smtd.202401244","DOIUrl":null,"url":null,"abstract":"<p><p>Upscaling the perovskite solar cell (PSC) while avoiding losses in the power conversion efficiency presents a substantial challenge, especially when transitioning from ≤1 cm<sup>2</sup> cells to ≥10 cm<sup>2</sup> modules. In addition to the fabrication of key functional layers, scalable technologies for surface passivation, considered indispensable for achieving high-performance PSCs, are urgently required. However, studies on this topic remain limited. In this study, an industry-ready slot-die coating method for the effective passivation of perovskite films as a practical alternative is developed to the spin-coating procedures commonly used in research. The coating conditions and molecular structure of the passivation agent are systematically optimized to achieve high-quality film morphology and substantially suppress interface recombination. 2-chloro-5-(trifluoromethyl)-phenylammonium bromide exhibited the best results, improving the open-circuit voltage of cells and subcells in a module by 80 ± 4 and 72 ± 10 mV, respectively. Correspondingly, the larger-area (active area: 10 cm<sup>2</sup>) modules sustained the highest efficiency of 21.9% under simulated 1-sun irradiation. The encapsulated devices retained 94% of their initial performances after 750 h of continuous operation. The proposed surface-passivation slot-die technology is compatible with high-throughput processes and is employable for large-scale PSC fabrication.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401244"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401244","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Upscaling the perovskite solar cell (PSC) while avoiding losses in the power conversion efficiency presents a substantial challenge, especially when transitioning from ≤1 cm2 cells to ≥10 cm2 modules. In addition to the fabrication of key functional layers, scalable technologies for surface passivation, considered indispensable for achieving high-performance PSCs, are urgently required. However, studies on this topic remain limited. In this study, an industry-ready slot-die coating method for the effective passivation of perovskite films as a practical alternative is developed to the spin-coating procedures commonly used in research. The coating conditions and molecular structure of the passivation agent are systematically optimized to achieve high-quality film morphology and substantially suppress interface recombination. 2-chloro-5-(trifluoromethyl)-phenylammonium bromide exhibited the best results, improving the open-circuit voltage of cells and subcells in a module by 80 ± 4 and 72 ± 10 mV, respectively. Correspondingly, the larger-area (active area: 10 cm2) modules sustained the highest efficiency of 21.9% under simulated 1-sun irradiation. The encapsulated devices retained 94% of their initial performances after 750 h of continuous operation. The proposed surface-passivation slot-die technology is compatible with high-throughput processes and is employable for large-scale PSC fabrication.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可扩展的槽模钝化层涂层,提高过氧化物太阳能电池组件的性能。
在提高过氧化物太阳能电池(PSC)规模的同时避免功率转换效率的损失是一项巨大的挑战,尤其是从≤1 平方厘米的电池过渡到≥10 平方厘米的模块时更是如此。除了关键功能层的制造外,还迫切需要可扩展的表面钝化技术,这被认为是实现高性能 PSCs 不可或缺的技术。然而,这方面的研究仍然有限。在本研究中,我们开发了一种适用于工业的槽模镀膜方法,用于有效钝化包晶薄膜,作为研究中常用的旋涂程序的一种实用替代方法。通过对镀膜条件和钝化剂分子结构的系统优化,实现了高质量的薄膜形态,并大大抑制了界面重组。2-chloro-5-(trifluoromethyl)-phenylammonium bromide 的效果最佳,模块中电池和子电池的开路电压分别提高了 80 ± 4 mV 和 72 ± 10 mV。相应地,较大面积(有效面积:10 平方厘米)的模块在模拟 1 太阳辐照下保持了 21.9% 的最高效率。封装器件在连续运行 750 小时后,仍保持了 94% 的初始性能。所提出的表面钝化槽形芯片技术与高通量工艺兼容,可用于大规模制造 PSC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
A Boat-Paddle-Like Molecule Binder with Twining-Blocked and Ultrafast Self-Healing Functionalities for Stable Silicon Anodes. Nano-Silica-Based Double-Layer Antireflective Coatings with Mildew Resistance and Moisture Resistance for KDP Crystals. Bio-Inspired P-type TeSeOx Synaptic Transistor Based on Multispectral Sensing for Neuromorphic Visual Multilevel Nociceptor. Oxygen Vacancy Engineering of TiNb2O7 Modified PE Separator Toward Dendrite-Free Lithium Metal Battery. Analysis of Metal-Organic Framework and Polyamide Interfaces in Membranes for Water Treatment and Antibacterial Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1