Liu Huang , Ang Li , Han-jie Liu , Shuang-shuang Ji , Hao Fei
{"title":"Exploring structure-directed immunogenic cytotoxicity of arginine-rich peptides for cytolysis-induced immunotherapy of cancer","authors":"Liu Huang , Ang Li , Han-jie Liu , Shuang-shuang Ji , Hao Fei","doi":"10.1016/j.bmc.2024.117984","DOIUrl":null,"url":null,"abstract":"<div><div>The same cells can die with varied immunological consequences. For the purpose of cancer therapy, stronger immunogenic death of cancer cells is considered favorable. Membrane disruptive peptides are cytotoxic agents with tunable structures capable of not just killing heterogeneous cancer cells, but also inducing immunogenic death. However, the chemo-structural principles that underlie their immunogenic cytotoxicity remain elusive. Here we investigated a series of arginine-rich amphipathic peptides with representative structures on the relationship between the mode of cell death and the immunogenic potency. Among several hydrophobic motif-appended cyclic octaarginine peptides, FC-14 was found to induce cell stress and necroptotic death, unlike apoptotic peptide RL2 and membrane-dissolving peptide RL1. Their differing abilities to release immunogenic death markers correlated well with their potential to activate innate immunity and protective vaccinal effect in a prophylactic model, with FC-14 being the most potent. FC-14 can be <u>p</u>re-<u>op</u>sonized with <u>a</u>lbumin into <u>n</u>anoparticles (PopAN-FC-14) using PopAN technology to improve its pharmacokinetic properties for intravenous injection. In a syngeneic mouse model of subcutaneous breast cancer, PopAN-FC-14 showed superior therapeutic effect and safety profile than the albumin formulated nanomedicine Nab-paclitaxel (Nab-PTX). Boost injections of PopAN-FC-14 significantly enhanced tumor-specific cellular and humoral immunities, acting similarly as <em>in-situ</em> cancer vaccine. Overall, this work demonstrates a novel focus on the immunogenic cytotoxicity of peptides and a practical approach for effective systemic therapy of cancer.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"116 ","pages":"Article 117984"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089624003985","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The same cells can die with varied immunological consequences. For the purpose of cancer therapy, stronger immunogenic death of cancer cells is considered favorable. Membrane disruptive peptides are cytotoxic agents with tunable structures capable of not just killing heterogeneous cancer cells, but also inducing immunogenic death. However, the chemo-structural principles that underlie their immunogenic cytotoxicity remain elusive. Here we investigated a series of arginine-rich amphipathic peptides with representative structures on the relationship between the mode of cell death and the immunogenic potency. Among several hydrophobic motif-appended cyclic octaarginine peptides, FC-14 was found to induce cell stress and necroptotic death, unlike apoptotic peptide RL2 and membrane-dissolving peptide RL1. Their differing abilities to release immunogenic death markers correlated well with their potential to activate innate immunity and protective vaccinal effect in a prophylactic model, with FC-14 being the most potent. FC-14 can be pre-opsonized with albumin into nanoparticles (PopAN-FC-14) using PopAN technology to improve its pharmacokinetic properties for intravenous injection. In a syngeneic mouse model of subcutaneous breast cancer, PopAN-FC-14 showed superior therapeutic effect and safety profile than the albumin formulated nanomedicine Nab-paclitaxel (Nab-PTX). Boost injections of PopAN-FC-14 significantly enhanced tumor-specific cellular and humoral immunities, acting similarly as in-situ cancer vaccine. Overall, this work demonstrates a novel focus on the immunogenic cytotoxicity of peptides and a practical approach for effective systemic therapy of cancer.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.