Possible roles of CAHS proteins from Tardigrade in osmotic stress tolerance in mammalian cells.

IF 2 4区 生物学 Q4 CELL BIOLOGY Cell structure and function Pub Date : 2024-12-14 Epub Date: 2024-12-05 DOI:10.1247/csf.24035
Takahiro Bino, Yuhei Goto, Gembu Maryu, Kazuharu Arakawa, Kazuhiro Aoki
{"title":"Possible roles of CAHS proteins from Tardigrade in osmotic stress tolerance in mammalian cells.","authors":"Takahiro Bino, Yuhei Goto, Gembu Maryu, Kazuharu Arakawa, Kazuhiro Aoki","doi":"10.1247/csf.24035","DOIUrl":null,"url":null,"abstract":"<p><p>Anhydrobiosis, a phenomenon in which organisms survive extreme dehydration by entering a reversible ametabolic state, is a remarkable example of survival strategies. This study focuses on anhydrobiosis in tardigrades, which are known for their resilience to severe environmental conditions. Tardigrades utilize several protective mechanisms against desiccation, notably the constitutive expression of cytoplasmic abundant heat soluble (CAHS) proteins in Ramazzottius varieornatus. These proteins share similarities in their amphiphatic alpha helices with late embryogenesis abundant (LEA) proteins, but differ significantly in their amino acid sequences. In this study, we further explored the functionality of CAHS proteins by analyzing their role in aggregation and tolerance to hyperosmotic stress in mammalian cells. Using live cell imaging, we examined the subcellular localization of several CAHS and LEA proteins in response to hyperosmotic stress. The expression of CAHS1, CAHS3, and CAHS8 tended to enhance the resilience to the hyperosmotic conditions. These findings not only deepen our understanding of the molecular mechanisms of anhydrobiosis but also highlight the potential of CAHS proteins as cryoprotectants.Key words: anhydrobiosis, Tardigrades, live imaging, disordered proteins, desiccation tolerance.</p>","PeriodicalId":9927,"journal":{"name":"Cell structure and function","volume":" ","pages":"123-133"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell structure and function","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.24035","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Anhydrobiosis, a phenomenon in which organisms survive extreme dehydration by entering a reversible ametabolic state, is a remarkable example of survival strategies. This study focuses on anhydrobiosis in tardigrades, which are known for their resilience to severe environmental conditions. Tardigrades utilize several protective mechanisms against desiccation, notably the constitutive expression of cytoplasmic abundant heat soluble (CAHS) proteins in Ramazzottius varieornatus. These proteins share similarities in their amphiphatic alpha helices with late embryogenesis abundant (LEA) proteins, but differ significantly in their amino acid sequences. In this study, we further explored the functionality of CAHS proteins by analyzing their role in aggregation and tolerance to hyperosmotic stress in mammalian cells. Using live cell imaging, we examined the subcellular localization of several CAHS and LEA proteins in response to hyperosmotic stress. The expression of CAHS1, CAHS3, and CAHS8 tended to enhance the resilience to the hyperosmotic conditions. These findings not only deepen our understanding of the molecular mechanisms of anhydrobiosis but also highlight the potential of CAHS proteins as cryoprotectants.Key words: anhydrobiosis, Tardigrades, live imaging, disordered proteins, desiccation tolerance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CAHS蛋白在哺乳动物细胞的渗透胁迫耐受性中的可能作用。
无水生物化是一种生物通过进入可逆的新陈代谢状态而在极度脱水的情况下存活下来的现象,是生存策略的一个杰出范例。这项研究的重点是以对恶劣环境条件的适应能力著称的沙蜥的无水生物状态。沙蜥利用几种保护机制来抵御干燥,特别是在Ramazzottius varieornatus中组成型表达的细胞质丰富热可溶性(CAHS)蛋白。这些蛋白的两亲α螺旋与晚期胚胎发生丰富蛋白(LEA)有相似之处,但在氨基酸序列上有显著差异。在本研究中,我们通过分析 CAHS 蛋白在哺乳动物细胞中聚集和耐受高渗压力的作用,进一步探索了它们的功能。利用活细胞成像技术,我们检测了几种 CAHS 和 LEA 蛋白在高渗透压下的亚细胞定位。CAHS1、CAHS3和CAHS8的表达倾向于增强对高渗条件的适应性。这些发现不仅加深了我们对无水生物症分子机制的理解,而且凸显了CAHS蛋白作为低温保护剂的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell structure and function
Cell structure and function 生物-细胞生物学
CiteScore
2.50
自引率
0.00%
发文量
6
审稿时长
>12 weeks
期刊介绍: Cell Structure and Function is a fully peer-reviewed, fully Open Access journal. As the official English-language journal of the Japan Society for Cell Biology, it is published continuously online and biannually in print. Cell Structure and Function publishes important, original contributions in all areas of molecular and cell biology. The journal welcomes the submission of manuscripts on research areas such as the cell nucleus, chromosomes, and gene expression; the cytoskeleton and cell motility; cell adhesion and the extracellular matrix; cell growth, differentiation and death; signal transduction; the protein life cycle; membrane traffic; and organelles.
期刊最新文献
A sensitive ERK fluorescent probe reveals the significance of minimal EGF-induced transcription. Possible roles of CAHS proteins from Tardigrade in osmotic stress tolerance in mammalian cells. Multi-color fluorescence live-cell imaging in Dictyostelium discoideum. Cell-wide arrangement of Golgi/RE units depends on the microtubule organization. The expression of the formin Fhod3 in mouse tongue striated muscle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1