{"title":"Temporal control of Staphylococcus aureus intracellular pH by sodium and potassium.","authors":"Julia K Hilliard, Casey M Gries","doi":"10.1093/femsle/fnae100","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptation to environmental change during both colonization and infection is essential to the pathogenesis of Staphylococcus aureus. Like other bacterial pathogens that require potassium to fulfill nutritional and chemiosmotic requirements, S. aureus has been shown to utilize potassium transport to modulate virulence gene expression, antimicrobial resistance, and osmotic tolerance. Recent studies examining the role for potassium uptake in mediating S. aureus physiology have also described its contribution in mediating carbon flux within central metabolism and generation of a proton motive force. Here, we utilize a pH-sensitive green fluorescent protein to examine the temporal regulation of S. aureus intracellular pH by potassium and sodium under various environmental conditions, including extracellular pH and antibiotic stress. Our results distinguish unique conditions and transport mechanisms that utilize these ions to modulate cytoplasmic pH homeostasis, and they identify these processes as a novel mechanism of intrinsic ampicillin resistance in S. aureus.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae100","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Adaptation to environmental change during both colonization and infection is essential to the pathogenesis of Staphylococcus aureus. Like other bacterial pathogens that require potassium to fulfill nutritional and chemiosmotic requirements, S. aureus has been shown to utilize potassium transport to modulate virulence gene expression, antimicrobial resistance, and osmotic tolerance. Recent studies examining the role for potassium uptake in mediating S. aureus physiology have also described its contribution in mediating carbon flux within central metabolism and generation of a proton motive force. Here, we utilize a pH-sensitive green fluorescent protein to examine the temporal regulation of S. aureus intracellular pH by potassium and sodium under various environmental conditions, including extracellular pH and antibiotic stress. Our results distinguish unique conditions and transport mechanisms that utilize these ions to modulate cytoplasmic pH homeostasis, and they identify these processes as a novel mechanism of intrinsic ampicillin resistance in S. aureus.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.