Novel Applications of Metformin in the Treatment of Septic Myocardial Injury Based on Metabolomics and Network Pharmacology.

IF 4.2 3区 医学 Q1 PHARMACOLOGY & PHARMACY European journal of pharmacology Pub Date : 2024-11-18 DOI:10.1016/j.ejphar.2024.177141
Xingyu Li, Zihan Zhang, Chaohong Li, Jun Liu, Qinghua Fang, Muzi Zhang, Jing Huang
{"title":"Novel Applications of Metformin in the Treatment of Septic Myocardial Injury Based on Metabolomics and Network Pharmacology.","authors":"Xingyu Li, Zihan Zhang, Chaohong Li, Jun Liu, Qinghua Fang, Muzi Zhang, Jing Huang","doi":"10.1016/j.ejphar.2024.177141","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>While metformin has shown promise in treating septic myocardial injury (SMI), its underlying mechanisms and impact on metabolic disturbances remain poorly understood.</p><p><strong>Methods: </strong>This study employed an integrated approach of metabolomics and network pharmacology to identify key targets and pathways through which metformin may act against SMI. Findings were validated using a lipopolysaccharide (LPS)-induced mouse model.</p><p><strong>Results: </strong>Metformin was found to counter myocardial metabolic disruptions, indicated by the reversal of 49 metabolites primarily involved in purine metabolism, pantothenate and CoA biosynthesis, and histidine metabolism. In vivo, metformin significantly improved survival rates and cardiac function, reduced cardiomyocyte apoptosis, and inhibited inflammation and oxidative stress in LPS-induced mice. Integrated analyses identified 27 potential targets for metformin in SMI treatment. KEGG pathway analysis revealed significant enrichment in TNF, HIF-1, IL-17, and PI3K/AKT signaling pathways, while protein-protein interaction analysis pinpointed ten core targets, including IL6, IL1B, CCL2, CASP3, MMP9, HIF1A, IGF1, NOS3, MMP2, and LEP. Molecular docking and dynamics simulations demonstrated metformin's high affinity for these core targets. Further, RT-qPCR and western blot analyses confirmed that metformin modulates core target expression to mitigate SMI. Notably, our data underscore the importance of PI3K/AKT and MMP2/MMP9 signaling pathways in SMI therapy.</p><p><strong>Conclusion: </strong>This study elucidates the metabolic and molecular mechanisms of metformin in SMI treatment, supporting its potential repurposing for SMI.</p>","PeriodicalId":12004,"journal":{"name":"European journal of pharmacology","volume":" ","pages":"177141"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of pharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejphar.2024.177141","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: While metformin has shown promise in treating septic myocardial injury (SMI), its underlying mechanisms and impact on metabolic disturbances remain poorly understood.

Methods: This study employed an integrated approach of metabolomics and network pharmacology to identify key targets and pathways through which metformin may act against SMI. Findings were validated using a lipopolysaccharide (LPS)-induced mouse model.

Results: Metformin was found to counter myocardial metabolic disruptions, indicated by the reversal of 49 metabolites primarily involved in purine metabolism, pantothenate and CoA biosynthesis, and histidine metabolism. In vivo, metformin significantly improved survival rates and cardiac function, reduced cardiomyocyte apoptosis, and inhibited inflammation and oxidative stress in LPS-induced mice. Integrated analyses identified 27 potential targets for metformin in SMI treatment. KEGG pathway analysis revealed significant enrichment in TNF, HIF-1, IL-17, and PI3K/AKT signaling pathways, while protein-protein interaction analysis pinpointed ten core targets, including IL6, IL1B, CCL2, CASP3, MMP9, HIF1A, IGF1, NOS3, MMP2, and LEP. Molecular docking and dynamics simulations demonstrated metformin's high affinity for these core targets. Further, RT-qPCR and western blot analyses confirmed that metformin modulates core target expression to mitigate SMI. Notably, our data underscore the importance of PI3K/AKT and MMP2/MMP9 signaling pathways in SMI therapy.

Conclusion: This study elucidates the metabolic and molecular mechanisms of metformin in SMI treatment, supporting its potential repurposing for SMI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于代谢组学和网络药理学的二甲双胍在治疗化脓性心肌损伤中的新应用。
背景:尽管二甲双胍在治疗脓毒性心肌损伤(SMI)方面已显示出前景,但人们对其潜在机制及其对代谢紊乱的影响仍知之甚少:本研究采用了代谢组学和网络药理学的综合方法,以确定二甲双胍可能对脓毒性心肌损伤起作用的关键靶点和途径。研究结果通过脂多糖(LPS)诱导的小鼠模型进行了验证:结果:研究发现,二甲双胍能对抗心肌代谢紊乱,这表现在它能逆转主要参与嘌呤代谢、泛酸和CoA生物合成以及组氨酸代谢的49种代谢物。在体内,二甲双胍能显著提高 LPS 诱导的小鼠的存活率和心脏功能,减少心肌细胞凋亡,抑制炎症和氧化应激。综合分析确定了二甲双胍治疗 SMI 的 27 个潜在靶点。KEGG通路分析显示,二甲双胍在TNF、HIF-1、IL-17和PI3K/AKT信号通路中具有显著的富集作用,而蛋白-蛋白相互作用分析则确定了10个核心靶点,包括IL6、IL1B、CCL2、CASP3、MMP9、HIF1A、IGF1、NOS3、MMP2和LEP。分子对接和动力学模拟证明了二甲双胍对这些核心靶点的高亲和力。此外,RT-qPCR 和 Western 印迹分析证实,二甲双胍能调节核心靶点的表达,从而缓解 SMI。值得注意的是,我们的数据强调了PI3K/AKT和MMP2/MMP9信号通路在SMI治疗中的重要性:本研究阐明了二甲双胍治疗 SMI 的代谢和分子机制,支持将二甲双胍重新用于 SMI 的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.00
自引率
0.00%
发文量
572
审稿时长
34 days
期刊介绍: The European Journal of Pharmacology publishes research papers covering all aspects of experimental pharmacology with focus on the mechanism of action of structurally identified compounds affecting biological systems. The scope includes: Behavioural pharmacology Neuropharmacology and analgesia Cardiovascular pharmacology Pulmonary, gastrointestinal and urogenital pharmacology Endocrine pharmacology Immunopharmacology and inflammation Molecular and cellular pharmacology Regenerative pharmacology Biologicals and biotherapeutics Translational pharmacology Nutriceutical pharmacology.
期刊最新文献
Signal profiles and spatial regulation of β-arrestin recruitment through Gβ5 and GRK3 at the μ-opioid receptor. A Comprehensive Review of Targeting RAF Kinase in Cancer Targeting RAF Kinase in Cancer. Deficiency of Endothelial TRPV4 Cation Channels Ameliorates Experimental Abdominal Aortic Aneurysm. Targets for improving prostate tumor response to radiotherapy. Role of the ventral tegmental area in general anesthesia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1