A self-immolative Kdn-glycoside substrate enables high-throughput screening for inhibitors of Kdnases.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Glycobiology Pub Date : 2024-11-21 DOI:10.1093/glycob/cwae094
Ali Nejatie, Cameron Proceviat, Christina Gros, Elizabeth Steves, Margo M Moore, David J Vocadlo, Andrew J Bennet
{"title":"A self-immolative Kdn-glycoside substrate enables high-throughput screening for inhibitors of Kdnases.","authors":"Ali Nejatie, Cameron Proceviat, Christina Gros, Elizabeth Steves, Margo M Moore, David J Vocadlo, Andrew J Bennet","doi":"10.1093/glycob/cwae094","DOIUrl":null,"url":null,"abstract":"<p><p>Aspergillus fumigatus, a filamentous fungus, is an opportunistic pathogen and the major causative agent of the often-fatal disease, invasive aspergillosis (IA). Current treatments for IA are limited due to their high toxicity and/or the emergence of drug resistance; therefore, a need exists for the development of new therapeutics to treat IA. The Kdnase produced by A. fumigatus plays a vital role in maintaining cell wall integrity. As there are no known Kdnases in humans, developing inhibitors of Kdnase from this fungal pathogen is a promising therapeutic approach. The rapid testing of enzymatic activity in a high-throughput screen of large chemical libraries can be an efficient way to find new small molecule lead compounds. Herein we show that a Kdn glycoside with a self-immolative cleavable aglycon is a practical and efficient substrate for a high throughput assay to identify Kdnase inhibitors. We optimized the activity assay and screened over 27,000 compounds from two bioactive chemical libraries as potential inhibitors, and we compared the hit compounds' potency towards Aspergillus terreus and Trichophyton rubrum Kdnases, two other fungal Kdnases. We validated a number of hits and these small molecules are potential leads for the development of novel therapeutics to treat invasive aspergillosis.</p>","PeriodicalId":12766,"journal":{"name":"Glycobiology","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glycobiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/glycob/cwae094","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aspergillus fumigatus, a filamentous fungus, is an opportunistic pathogen and the major causative agent of the often-fatal disease, invasive aspergillosis (IA). Current treatments for IA are limited due to their high toxicity and/or the emergence of drug resistance; therefore, a need exists for the development of new therapeutics to treat IA. The Kdnase produced by A. fumigatus plays a vital role in maintaining cell wall integrity. As there are no known Kdnases in humans, developing inhibitors of Kdnase from this fungal pathogen is a promising therapeutic approach. The rapid testing of enzymatic activity in a high-throughput screen of large chemical libraries can be an efficient way to find new small molecule lead compounds. Herein we show that a Kdn glycoside with a self-immolative cleavable aglycon is a practical and efficient substrate for a high throughput assay to identify Kdnase inhibitors. We optimized the activity assay and screened over 27,000 compounds from two bioactive chemical libraries as potential inhibitors, and we compared the hit compounds' potency towards Aspergillus terreus and Trichophyton rubrum Kdnases, two other fungal Kdnases. We validated a number of hits and these small molecules are potential leads for the development of novel therapeutics to treat invasive aspergillosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种自褪色的 Kdn-糖苷底物可实现 Kdn 酶抑制剂的高通量筛选。
曲霉菌(Aspergillus fumigatus)是一种丝状真菌,是一种机会性病原体,也是侵袭性曲霉菌病(IA)这种常常致命的疾病的主要致病菌。目前治疗侵袭性曲霉病的方法因毒性大和/或出现耐药性而受到限制;因此,需要开发治疗侵袭性曲霉病的新疗法。烟曲霉产生的 Kdnase 在维持细胞壁完整性方面发挥着重要作用。由于人类没有已知的 Kdnase,因此开发这种真菌病原体的 Kdnase 抑制剂是一种很有前景的治疗方法。在大型化学库的高通量筛选中对酶活性进行快速测试,是寻找新的小分子先导化合物的有效方法。在本文中,我们发现具有自巯基可裂解苷元的 Kdn 苷是一种实用、高效的底物,可用于鉴定 Kdnase 抑制剂的高通量试验。我们优化了活性测定,并从两个生物活性化学库中筛选出 27,000 多种化合物作为潜在的抑制剂,还比较了命中化合物对赤曲霉和红毛癣菌 Kdnase(另外两种真菌 Kdnase)的效力。我们验证了一些命中化合物,这些小分子是开发治疗侵袭性曲霉菌病的新型疗法的潜在线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Glycobiology
Glycobiology 生物-生化与分子生物学
CiteScore
7.50
自引率
4.70%
发文量
73
审稿时长
3 months
期刊介绍: Established as the leading journal in the field, Glycobiology provides a unique forum dedicated to research into the biological functions of glycans, including glycoproteins, glycolipids, proteoglycans and free oligosaccharides, and on proteins that specifically interact with glycans (including lectins, glycosyltransferases, and glycosidases). Glycobiology is essential reading for researchers in biomedicine, basic science, and the biotechnology industries. By providing a single forum, the journal aims to improve communication between glycobiologists working in different disciplines and to increase the overall visibility of the field.
期刊最新文献
A self-immolative Kdn-glycoside substrate enables high-throughput screening for inhibitors of Kdnases. Galectin-3 disrupts tight junctions of airway epithelial cell monolayers by inducing expression and release of matrix metalloproteinases upon influenza a infection. The 1st International Symposium on GPI and its Deficiency: Bridging Basic Research to Medical Frontiers in PNH and IGD. Why Nature Evolved GPI-anchored proteins: Unique Structure Characteristics Enable Versatile Cell Surface Functions. The diversity of glycan chains in jellyfish mucin of three Cubozoan species: the contrast in molecular evolution rates of the peptide chain and Glycans.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1