Qiang Hou, Wei Wei, Xin Zhou, Wenhui Liu, Ke Wang, Xiangzhuo Xing, Yufeng Zhang, Nan Zhou, Yongqiang Pan, Yue Sun, Zhixiang Shi
{"title":"Bulk and surface Dirac states accompanied by two superconducting domes in FeSe-based superconductors.","authors":"Qiang Hou, Wei Wei, Xin Zhou, Wenhui Liu, Ke Wang, Xiangzhuo Xing, Yufeng Zhang, Nan Zhou, Yongqiang Pan, Yue Sun, Zhixiang Shi","doi":"10.1073/pnas.2409756121","DOIUrl":null,"url":null,"abstract":"<p><p>Recent investigations of FeSe-based superconductors have revealed the presence of two superconducting domes and suggest possible distinct pairing mechanisms. Two superconducting domes are commonly found in unconventional superconductors and exhibit unique normal states and electronic structures. In this study, we conducted electromagnetic transport measurements to establish a complete phase diagram, successfully observing the two superconducting domes in FeSe<sub>1-<i>x</i></sub>S<i><sub>x</sub></i> (0 ≤ <i>x</i> ≤ 0.25) and FeSe<sub>1-<i>x</i></sub>Te<i><sub>x</sub></i> (0 ≤ <i>x</i> ≤ 1) superconductors. The normal state resistivity on SC1 shows the strange metal state, with a power exponent approximately equal to 1 (<i>ρ</i>(<i>T</i>) ∝ <i>T<sup>n</sup></i> with <i>n</i> ~ 1), whereas the exponent on SC2 is less than 1. A bulk Dirac state observed on SC1, completely synchronized with the strange metal behavior, indicating a close relationship between them. While a topological surface Dirac state is witnessed on SC2 and undergoes a sign change near the pure nematic quantum critical point. The evolution of the Dirac states indicates that the appearance of the two superconducting domes may originate from the Fermi surface reconstruction. Our findings highlight distinct Dirac states and normal state resistivity across the two superconducting domes, providing convincing evidence for the existence of the two different pairing mechanisms in FeSe-based superconductors.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"121 48","pages":"e2409756121"},"PeriodicalIF":9.4000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2409756121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recent investigations of FeSe-based superconductors have revealed the presence of two superconducting domes and suggest possible distinct pairing mechanisms. Two superconducting domes are commonly found in unconventional superconductors and exhibit unique normal states and electronic structures. In this study, we conducted electromagnetic transport measurements to establish a complete phase diagram, successfully observing the two superconducting domes in FeSe1-xSx (0 ≤ x ≤ 0.25) and FeSe1-xTex (0 ≤ x ≤ 1) superconductors. The normal state resistivity on SC1 shows the strange metal state, with a power exponent approximately equal to 1 (ρ(T) ∝ Tn with n ~ 1), whereas the exponent on SC2 is less than 1. A bulk Dirac state observed on SC1, completely synchronized with the strange metal behavior, indicating a close relationship between them. While a topological surface Dirac state is witnessed on SC2 and undergoes a sign change near the pure nematic quantum critical point. The evolution of the Dirac states indicates that the appearance of the two superconducting domes may originate from the Fermi surface reconstruction. Our findings highlight distinct Dirac states and normal state resistivity across the two superconducting domes, providing convincing evidence for the existence of the two different pairing mechanisms in FeSe-based superconductors.
期刊介绍:
The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.