Annotated test-retest dataset of lung cancer CT scan images reconstructed at multiple imaging parameters.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2024-11-20 DOI:10.1038/s41597-024-04085-3
Binsheng Zhao, Laurent Dercle, Hao Yang, Gregory J Riely, Mark G Kris, Lawrence H Schwartz
{"title":"Annotated test-retest dataset of lung cancer CT scan images reconstructed at multiple imaging parameters.","authors":"Binsheng Zhao, Laurent Dercle, Hao Yang, Gregory J Riely, Mark G Kris, Lawrence H Schwartz","doi":"10.1038/s41597-024-04085-3","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative imaging biomarkers (QIB) are increasingly used in clinical research to advance precision medicine approaches in oncology. Computed tomography (CT) is a modality of choice for cancer diagnosis, prognosis, and response assessment due to its reliability and global accessibility. Here, we contribute to the cancer imaging community through The Cancer Imaging Archive (TCIA) by providing investigator-initiated, same-day repeat CT scan images of 32 non-small cell lung cancer (NSCLC) patients, along with radiologist-annotated lesion contours as a reference standard. Each scan was reconstructed into 6 image settings using various combinations of three slice thicknesses (1.25 mm, 2.5 mm, 5 mm) and two reconstruction kernels (lung, standard; GE CT equipment), which spans a wide range of CT imaging reconstruction parameters commonly used in lung cancer clinical practice and clinical trials. This holds considerable value for advancing the development of robust Radiomics, Artificial Intelligence (AI) and machine learning (ML) methods.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1259"},"PeriodicalIF":5.8000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579286/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04085-3","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Quantitative imaging biomarkers (QIB) are increasingly used in clinical research to advance precision medicine approaches in oncology. Computed tomography (CT) is a modality of choice for cancer diagnosis, prognosis, and response assessment due to its reliability and global accessibility. Here, we contribute to the cancer imaging community through The Cancer Imaging Archive (TCIA) by providing investigator-initiated, same-day repeat CT scan images of 32 non-small cell lung cancer (NSCLC) patients, along with radiologist-annotated lesion contours as a reference standard. Each scan was reconstructed into 6 image settings using various combinations of three slice thicknesses (1.25 mm, 2.5 mm, 5 mm) and two reconstruction kernels (lung, standard; GE CT equipment), which spans a wide range of CT imaging reconstruction parameters commonly used in lung cancer clinical practice and clinical trials. This holds considerable value for advancing the development of robust Radiomics, Artificial Intelligence (AI) and machine learning (ML) methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以多种成像参数重建的肺癌 CT 扫描图像的注释测试-重复数据集。
定量成像生物标志物(QIB)越来越多地被用于临床研究,以推进肿瘤学的精准医疗方法。计算机断层扫描(CT)因其可靠性和全球可及性而成为癌症诊断、预后和反应评估的首选方式。在此,我们通过癌症成像档案(TCIA)为癌症成像界做出了贡献,提供了由研究者发起的 32 名非小细胞肺癌(NSCLC)患者的当天重复 CT 扫描图像,以及放射科医生标注的病灶轮廓作为参考标准。每次扫描都使用三种切片厚度(1.25 毫米、2.5 毫米、5 毫米)和两种重建核(肺部、标准;GE CT 设备)的不同组合重建成 6 种图像设置,涵盖了肺癌临床实践和临床试验中常用的各种 CT 成像重建参数。这对于推动强大的放射组学、人工智能(AI)和机器学习(ML)方法的发展具有相当大的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A 3D dental model dataset with pre/post-orthodontic treatment for automatic tooth alignment. A Database of Stress-Strain Properties Auto-generated from the Scientific Literature using ChemDataExtractor. A multi-region single nucleus transcriptomic atlas of Parkinson's disease. A reference quality, fully annotated diploid genome from a Saudi individual. An ultrasonography of thyroid nodules dataset with pathological diagnosis annotation for deep learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1