Injectable drug-loaded thermosensitive hydrogel delivery system for protecting retina ganglion cells in traumatic optic neuropathy.

IF 5.6 1区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Regenerative Biomaterials Pub Date : 2024-10-24 eCollection Date: 2024-01-01 DOI:10.1093/rb/rbae124
Lei Wang, Yan Jiang, Yili Yao, Yudan Deng, Zhiqiang Liu, Jiangtao Ding, Wenwen Wang, Hao Chen, Kaihui Nan, Lingli Li
{"title":"Injectable drug-loaded thermosensitive hydrogel delivery system for protecting retina ganglion cells in traumatic optic neuropathy.","authors":"Lei Wang, Yan Jiang, Yili Yao, Yudan Deng, Zhiqiang Liu, Jiangtao Ding, Wenwen Wang, Hao Chen, Kaihui Nan, Lingli Li","doi":"10.1093/rb/rbae124","DOIUrl":null,"url":null,"abstract":"<p><p>Currently, generalized therapy for traumatic optic neuropathy (TON) is lacking. Various strategies have been developed to protect and regenerate retinal ganglion cells (RGCs) after TON. Intravitreal injection of supplements has been approved as a promising approach, although serious concerns, such as low delivery efficacy and pain due to frequent injections, remain. In this study, we tested an injectable thermosensitive hydrogel drug delivery system engineered to deliver ciliary neurotrophic factor (CNTF) and triamcinolone acetonide (TA). The results of rheological studies showed that the prepared drug-loaded hydrogel possessed a suitable mechanical modulus of ∼300 Pa, consistent with that of vitreum. The hydrogel exhibited thermosensitive with sustained drug release performance. <i>In vitro</i> co-culture of the CNTF-loaded hydrogel system with primary RGCs also induced significant axon regeneration, with 38.5% increase in neurite length, indicating the regenerative response of the thermosensitive hydrogel drug delivery system. A Sprague-Dawley rat optic nerve crush model was constructed and applied to determine the neuroprotective and regenerative capacities of the system. The results demonstrated that a single intravitreal injection of the drug-loaded hydrogel (PLGA-PEG-PLGA + TA or PLGA-PEG-PLGA + CNTF) significantly increased RGC survival at both 14 and 28 days. The RGC survival rate was 31.05 ± 1.41% for the drug-loaded hydrogel system (the control group was 16.79 ± 1.50%) at Day 28. These findings suggest that the injectable drug-loaded thermosensitive hydrogel delivery system is a promising therapeutic tool for treating optic nerve degeneration.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae124"},"PeriodicalIF":5.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578600/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae124","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, generalized therapy for traumatic optic neuropathy (TON) is lacking. Various strategies have been developed to protect and regenerate retinal ganglion cells (RGCs) after TON. Intravitreal injection of supplements has been approved as a promising approach, although serious concerns, such as low delivery efficacy and pain due to frequent injections, remain. In this study, we tested an injectable thermosensitive hydrogel drug delivery system engineered to deliver ciliary neurotrophic factor (CNTF) and triamcinolone acetonide (TA). The results of rheological studies showed that the prepared drug-loaded hydrogel possessed a suitable mechanical modulus of ∼300 Pa, consistent with that of vitreum. The hydrogel exhibited thermosensitive with sustained drug release performance. In vitro co-culture of the CNTF-loaded hydrogel system with primary RGCs also induced significant axon regeneration, with 38.5% increase in neurite length, indicating the regenerative response of the thermosensitive hydrogel drug delivery system. A Sprague-Dawley rat optic nerve crush model was constructed and applied to determine the neuroprotective and regenerative capacities of the system. The results demonstrated that a single intravitreal injection of the drug-loaded hydrogel (PLGA-PEG-PLGA + TA or PLGA-PEG-PLGA + CNTF) significantly increased RGC survival at both 14 and 28 days. The RGC survival rate was 31.05 ± 1.41% for the drug-loaded hydrogel system (the control group was 16.79 ± 1.50%) at Day 28. These findings suggest that the injectable drug-loaded thermosensitive hydrogel delivery system is a promising therapeutic tool for treating optic nerve degeneration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于保护外伤性视神经病变视网膜神经节细胞的热敏水凝胶注射给药系统。
目前,还缺乏针对创伤性视神经病变(TON)的通用疗法。目前已开发出多种策略来保护和再生创伤性视神经病变后的视网膜神经节细胞(RGC)。玻璃体内注射补充剂已被批准为一种很有前景的方法,但仍存在一些严重的问题,如给药效力低和频繁注射造成的疼痛。在本研究中,我们测试了一种可注射的热敏性水凝胶给药系统,该系统可用于给药睫状肌神经营养因子(CNTF)和曲安奈德(TA)。流变学研究结果表明,制备的载药水凝胶具有与玻璃体相一致的 300 Pa 的机械模量。该水凝胶具有热敏性和持续释药性能。在体外将负载 CNTF 的水凝胶系统与原代 RGCs 共同培养,也诱导了显著的轴突再生,神经元长度增加了 38.5%,表明热敏性水凝胶给药系统具有再生反应。为了确定该系统的神经保护和再生能力,研究人员构建并应用了 Sprague-Dawley 大鼠视神经挤压模型。结果表明,单次玻璃体内注射药物水凝胶(PLGA-PEG-PLGA + TA 或 PLGA-PEG-PLGA + CNTF)可显著提高 14 天和 28 天的 RGC 存活率。第28天时,载药水凝胶系统的RGC存活率为31.05 ± 1.41%(对照组为16.79 ± 1.50%)。这些研究结果表明,可注射的载药热敏水凝胶给药系统是治疗视神经变性的一种很有前景的治疗工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Regenerative Biomaterials
Regenerative Biomaterials Materials Science-Biomaterials
CiteScore
7.90
自引率
16.40%
发文量
92
审稿时长
10 weeks
期刊介绍: Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.
期刊最新文献
Correction to: Nanocarrier of Pin1 inhibitor based on supercritical fluid technology inhibits cancer metastasis by blocking multiple signaling pathways. Cell-microsphere based living microhybrids for osteogenesis regulating to boosting biomineralization. Determination of DNA content as quality control in decellularized tissues: challenges and pitfalls. Injectable drug-loaded thermosensitive hydrogel delivery system for protecting retina ganglion cells in traumatic optic neuropathy. Correction to: Constructing a highly efficient multifunctional carbon quantum dot platform for the treatment of infectious wounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1