Reconstructing 3D histological structures using machine learning (artificial intelligence) algorithms.

Pathologie (Heidelberg, Germany) Pub Date : 2024-11-01 Epub Date: 2024-11-21 DOI:10.1007/s00292-024-01387-6
J Báskay, M Kivovics, D Pénzes, E Kontsek, A Pesti, A Kiss, M Szócska, O Németh, P Pollner
{"title":"Reconstructing 3D histological structures using machine learning (artificial intelligence) algorithms.","authors":"J Báskay, M Kivovics, D Pénzes, E Kontsek, A Pesti, A Kiss, M Szócska, O Németh, P Pollner","doi":"10.1007/s00292-024-01387-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Histomorphometry is currently the gold standard for bone microarchitectural examinations. This relies on two-dimensional (2D) sections to deduce the spatial properties of structures. Micromorphometric parameters are calculated from these sections based on the assumption of a plate-like 3D microarchitecture, resulting in the loss of 3D structure due to the destructive nature of classical histological processing.</p><p><strong>Materials and methods: </strong>To overcome the limitation of histomorphometry and reconstruct the 3D architecture of bone core biopsy samples from 2D histological sections, bone core biopsy samples were decalcified and embedded in paraffin. Subsequently, 5 µm thick serial sections were stained with hematoxylin and eosin and scanned using a 3DHISTECH PANNORAMIC 1000 Digital Slide Scanner (3DHISTECH, Budapest, Hungary). A modified U‑Net architecture was trained to categorize tissues on the sections. LoFTR feature matching combined with affine transformations was employed to create the histologic reconstruction. Micromorphometric parameters were calculated using Bruker's CTAn software (v. 1.18.8.0, Bruker, Kontich, Belgium) for both histological and microCT datasets.</p><p><strong>Results: </strong>Our method achieved an overall accuracy of 95.26% (95% confidence interval (CI): [94.15%, 96.37%]) with an F‑score of 0.9320 (95% CI: [0.9211, 0.9429]) averaged across all classes. Correlation coefficients between micromorphometric parameters measured on microCT imaging and histological reconstruction showed a strong linear relationship, with Spearman's ρ‑values of 0.777, 0.717, 0.705, 0.666, and 0.687 for bone volume/tissue volume (BV/TV), bone surface/TV, trabecular pattern factor, trabecular thickness, and trabecular separation, respectively. Bland-Altman and mountain plots indicated good agreement between the methods for BV/TV measurements.</p><p><strong>Conclusion: </strong>This method enables examination of tissue microarchitecture in 3D with an even higher resolution than microcomputed tomography (microCT), without losing information on cellularity. However, the limitation of this procedure is its destructive nature, which precludes subsequent mechanical testing of the sample or any further secondary measurements. Furthermore, the number of histological sections that can be created from a single sample is limited.</p>","PeriodicalId":74402,"journal":{"name":"Pathologie (Heidelberg, Germany)","volume":" ","pages":"67-73"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathologie (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00292-024-01387-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Histomorphometry is currently the gold standard for bone microarchitectural examinations. This relies on two-dimensional (2D) sections to deduce the spatial properties of structures. Micromorphometric parameters are calculated from these sections based on the assumption of a plate-like 3D microarchitecture, resulting in the loss of 3D structure due to the destructive nature of classical histological processing.

Materials and methods: To overcome the limitation of histomorphometry and reconstruct the 3D architecture of bone core biopsy samples from 2D histological sections, bone core biopsy samples were decalcified and embedded in paraffin. Subsequently, 5 µm thick serial sections were stained with hematoxylin and eosin and scanned using a 3DHISTECH PANNORAMIC 1000 Digital Slide Scanner (3DHISTECH, Budapest, Hungary). A modified U‑Net architecture was trained to categorize tissues on the sections. LoFTR feature matching combined with affine transformations was employed to create the histologic reconstruction. Micromorphometric parameters were calculated using Bruker's CTAn software (v. 1.18.8.0, Bruker, Kontich, Belgium) for both histological and microCT datasets.

Results: Our method achieved an overall accuracy of 95.26% (95% confidence interval (CI): [94.15%, 96.37%]) with an F‑score of 0.9320 (95% CI: [0.9211, 0.9429]) averaged across all classes. Correlation coefficients between micromorphometric parameters measured on microCT imaging and histological reconstruction showed a strong linear relationship, with Spearman's ρ‑values of 0.777, 0.717, 0.705, 0.666, and 0.687 for bone volume/tissue volume (BV/TV), bone surface/TV, trabecular pattern factor, trabecular thickness, and trabecular separation, respectively. Bland-Altman and mountain plots indicated good agreement between the methods for BV/TV measurements.

Conclusion: This method enables examination of tissue microarchitecture in 3D with an even higher resolution than microcomputed tomography (microCT), without losing information on cellularity. However, the limitation of this procedure is its destructive nature, which precludes subsequent mechanical testing of the sample or any further secondary measurements. Furthermore, the number of histological sections that can be created from a single sample is limited.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习(人工智能)算法重建三维组织学结构。
背景:组织形态学是目前骨微观结构检查的黄金标准。它依靠二维(2D)切片来推断结构的空间属性。微形态测量参数是基于板状三维微结构的假设从这些切片中计算出来的,由于传统组织学处理的破坏性,导致了三维结构的丢失:为了克服组织形态学的局限性,并从二维组织学切片重建骨芯活检样本的三维结构,我们对骨芯活检样本进行了脱钙处理并用石蜡包埋。随后,用苏木精和伊红对 5 µm 厚的连续切片进行染色,并使用 3DHISTECH PANNORAMIC 1000 数字幻灯片扫描仪(匈牙利布达佩斯,3DHISTECH)进行扫描。对改进的 U-Net 架构进行了训练,以对切片上的组织进行分类。采用 LoFTR 特征匹配结合仿射变换来创建组织学重建。使用布鲁克公司的 CTAn 软件(1.18.8.0 版,布鲁克公司,比利时孔蒂奇)计算组织学数据集和 microCT 数据集的微形态参数:我们的方法在所有类别中的平均准确率为 95.26%(95% 置信区间 (CI):[94.15%, 96.37%]),F 值为 0.9320(95% 置信区间 (CI):[0.9211, 0.9429])。显微 CT 成像测量的微形态参数与组织学重建之间的相关系数显示出很强的线性关系,骨体积/组织体积 (BV/TV)、骨表面/TV、小梁形态因子、小梁厚度和小梁分离的 Spearman ρ 值分别为 0.777、0.717、0.705、0.666 和 0.687。Bland-Altman图和山形图显示,这两种方法的骨体积/组织体积测量结果具有良好的一致性:结论:这种方法能以比微计算机断层扫描(microCT)更高的分辨率检查组织的三维微观结构,同时不会丢失细胞信息。然而,这种方法的局限性在于其破坏性,因此无法对样本进行后续的机械测试或任何进一步的二次测量。此外,单个样本可制作的组织切片数量有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Neuroendocrine tumors]. [Exanthematic drug eruption]. Erratum zu: Können wir trotz des rasanten Fortschritts in der Medizin und der wachsenden diagnostischen Anforderungen Generalist*innen bleiben? [Incidental diagnosis of lymphangioleiomyomatosis in gynecological surgery-a case series]. Erratum zu: Biomarker MET in der Tumorpathologie.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1