Sparse Neighbor Joining: rapid phylogenetic inference using a sparse distance matrix.

Semih Kurt, Alexandre Bouchard-Côté, Jens Lagergren
{"title":"Sparse Neighbor Joining: rapid phylogenetic inference using a sparse distance matrix.","authors":"Semih Kurt, Alexandre Bouchard-Côté, Jens Lagergren","doi":"10.1093/bioinformatics/btae701","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Phylogenetic reconstruction is a fundamental problem in computational biology. The Neighbor Joining (NJ) algorithm offers an efficient distance-based solution to this problem, which often serves as the foundation for more advanced statistical methods. Despite prior efforts to enhance the speed of NJ, the computation of the n  2 entries of the distance matrix, where n is the number of phylogenetic tree leaves, continues to pose a limitation in scaling NJ to larger datasets.</p><p><strong>Results: </strong>In this work, we propose a new algorithm which does not require computing a dense distance matrix. Instead, it dynamically determines a sparse set of at most O(n log n) distance matrix entries to be computed in its basic version, and up to O(n log 2n) entries in an enhanced version. We show by experiments that this approach reduces the execution time of NJ for large datasets, with a trade-off in accuracy.</p><p><strong>Availability and implementation: </strong>Sparse Neighbor Joining is implemented in Python and freely available at https://github.com/kurtsemih/SNJ.</p><p><strong>Supplementary information: </strong>Supplementary data are available at Bioinformatics online.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Phylogenetic reconstruction is a fundamental problem in computational biology. The Neighbor Joining (NJ) algorithm offers an efficient distance-based solution to this problem, which often serves as the foundation for more advanced statistical methods. Despite prior efforts to enhance the speed of NJ, the computation of the n  2 entries of the distance matrix, where n is the number of phylogenetic tree leaves, continues to pose a limitation in scaling NJ to larger datasets.

Results: In this work, we propose a new algorithm which does not require computing a dense distance matrix. Instead, it dynamically determines a sparse set of at most O(n log n) distance matrix entries to be computed in its basic version, and up to O(n log 2n) entries in an enhanced version. We show by experiments that this approach reduces the execution time of NJ for large datasets, with a trade-off in accuracy.

Availability and implementation: Sparse Neighbor Joining is implemented in Python and freely available at https://github.com/kurtsemih/SNJ.

Supplementary information: Supplementary data are available at Bioinformatics online.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏邻接:使用稀疏距离矩阵快速进行系统发育推断。
动机系统发育重建是计算生物学的一个基本问题。Neighbor Joining(NJ)算法为这一问题提供了基于距离的高效解决方案,通常是更高级统计方法的基础。尽管之前有人努力提高 NJ 的速度,但计算距离矩阵的 n 2 个条目(n 是系统发生树的叶片数)仍然是 NJ 扩展到更大数据集时的一个限制因素:在这项工作中,我们提出了一种无需计算密集距离矩阵的新算法。取而代之的是,在基本版本中,它可以动态确定一组稀疏的距离矩阵条目,最多可计算 O(n log n)个条目;在增强版本中,最多可计算 O(n log 2n) 个条目。我们通过实验证明,这种方法缩短了 NJ 在大型数据集上的执行时间,但在准确性上有所折衷:Sparse Neighbor Joining 是用 Python 实现的,可在 https://github.com/kurtsemih/SNJ.Supplementary 免费获取:补充数据可在 Bioinformatics online 上获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RUCova: Removal of Unwanted Covariance in mass cytometry data. ViraLM: Empowering Virus Discovery through the Genome Foundation Model. CVR-BBI: An Open-Source VR Platform for Multi-User Collaborative Brain to Brain Interfaces. Expert-guided protein Language Models enable accurate and blazingly fast fitness prediction. FungiFun3: Systemic gene set enrichment analysis for fungal species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1