Hybrid prediction model with improved score level fusion for heart disease diagnosis

IF 2.6 4区 生物学 Q2 BIOLOGY Computational Biology and Chemistry Pub Date : 2024-11-12 DOI:10.1016/j.compbiolchem.2024.108278
Shaik Ghouhar Taj, K. Kalaivani
{"title":"Hybrid prediction model with improved score level fusion for heart disease diagnosis","authors":"Shaik Ghouhar Taj,&nbsp;K. Kalaivani","doi":"10.1016/j.compbiolchem.2024.108278","DOIUrl":null,"url":null,"abstract":"<div><div>Heart disease diagnosis is a challenging task, which provides an automated forecast of the patient's heart illness to make future treatment simpler. This has led to extensive interest in heart disease diagnostics in the medical sector. However, as there are various risks, the prediction must be more appropriate to avoid death. This work intends to develop the Hybrid Prediction Model with Improved Score Level Fusion (HPISLF) for Heart Disease Prediction. Preprocessing is the first process, where improved min-max normalization is done to preprocess the input data. Feature extraction plays a major role as it extracts additional information from the input data via extracting HOS, Improved Holoentropy-based features, and MI are extracted. Also, proposing a hybrid classification model for diagnosis, which trains the model with the extracted feature set. The final classification outcome is determined by the improved score level fusion that fuses the classification outcomes from both the classifiers, CNN and DeepMaxout. The performance of the proposed work is validated and compared over the conventional methods in terms of accuracy, precision, and other measures.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108278"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124002664","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heart disease diagnosis is a challenging task, which provides an automated forecast of the patient's heart illness to make future treatment simpler. This has led to extensive interest in heart disease diagnostics in the medical sector. However, as there are various risks, the prediction must be more appropriate to avoid death. This work intends to develop the Hybrid Prediction Model with Improved Score Level Fusion (HPISLF) for Heart Disease Prediction. Preprocessing is the first process, where improved min-max normalization is done to preprocess the input data. Feature extraction plays a major role as it extracts additional information from the input data via extracting HOS, Improved Holoentropy-based features, and MI are extracted. Also, proposing a hybrid classification model for diagnosis, which trains the model with the extracted feature set. The final classification outcome is determined by the improved score level fusion that fuses the classification outcomes from both the classifiers, CNN and DeepMaxout. The performance of the proposed work is validated and compared over the conventional methods in terms of accuracy, precision, and other measures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合预测模型与改进的分数级融合用于心脏病诊断。
心脏病诊断是一项极具挑战性的任务,它能自动预测患者的心脏疾病,使未来的治疗更加简单。因此,医学界对心脏病诊断产生了广泛的兴趣。然而,由于存在各种风险,预测必须更加适当,以避免死亡。这项工作旨在开发用于心脏病预测的改进分数级融合混合预测模型(HPISLF)。预处理是第一道工序,通过改进的最小-最大归一化对输入数据进行预处理。特征提取起着重要作用,因为它通过提取 HOS、基于全熵的改进特征和 MI 从输入数据中提取额外信息。此外,还提出了一种用于诊断的混合分类模型,该模型利用提取的特征集进行训练。最终的分类结果由改进的分数级融合决定,它融合了 CNN 和 DeepMaxout 这两种分类器的分类结果。在准确度、精确度和其他衡量标准方面,对所提出的工作性能进行了验证,并与传统方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Biology and Chemistry
Computational Biology and Chemistry 生物-计算机:跨学科应用
CiteScore
6.10
自引率
3.20%
发文量
142
审稿时长
24 days
期刊介绍: Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered. Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered. Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.
期刊最新文献
scSFCL:Deep clustering of scRNA-seq data with subspace feature confidence learning A structure-based approach to discover a potential isomerase Pin1 inhibitor for cancer therapy using computational simulation and biological studies In-silico screening to identify phytochemical inhibitor for hP2X7: A crucial inflammatory cell death mediator in Parkinson’s disease Pharmacoinformatics-based prediction of Checkpoint kinase-1 inhibitors from Momordica charantia Linn. for cancer A multi-perspective deep learning framework for enhancer characterization and identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1