Hydrogen radical enabling industrial‐level oxygen electroreduction to hydrogen peroxide

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-11-22 DOI:10.1002/anie.202420063
Song Xue, Xiaohui Li, Yuanyuan Sun, Wangyang Cui, Fengliang Cao, Zhisheng Cao, Yin Huang, Mingzheng Shao, Zhongtao Li, Linjie Zhi
{"title":"Hydrogen radical enabling industrial‐level oxygen electroreduction to hydrogen peroxide","authors":"Song Xue, Xiaohui Li, Yuanyuan Sun, Wangyang Cui, Fengliang Cao, Zhisheng Cao, Yin Huang, Mingzheng Shao, Zhongtao Li, Linjie Zhi","doi":"10.1002/anie.202420063","DOIUrl":null,"url":null,"abstract":"The electrochemical synthesis of hydrogen peroxide from oxygen and water, powered by renewable electricity, provides a highly attractive alternative to the energy‐intensive autoxidation process presently used in industry, but much remains unknown about this two‐electron oxygen reduction reaction (2e‐ORR), especially the local proton effect. Here, we have investigated the function of hydrogen‐associated intermediates in the 2e‐ORR using a rationally designed cooperative electrode material with cobalt (II) clusters embedded onto the oxidized carbon nanotube composites (Co‐OCNT). We found that the local proton availability can determine both the reaction kinetics and selectivity. A 2e‐ORR process involving hydrogen radical transfer is confirmed. Specifically, the carbon sites from the OCNTs promote proton production, and the cobalt sites from the Co cluster facilitate ORR intermediate formation. The high local proton availability and the cooperative dual‐active sites both contribute to the superior reaction kinetics and selectivity of the Co‐OCNT, reaching an H2O2 production rate of ~13.4 mol gcat‐1 h‐1 and a faradaic efficiency of 90% at a current density of 100 mA cm‐2. Further cascading the 2e‐ORR with the electro‐Fenton process shows a high selectivity of oxalic acid up to 97% for the valorization of ethylene glycol.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"469 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420063","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical synthesis of hydrogen peroxide from oxygen and water, powered by renewable electricity, provides a highly attractive alternative to the energy‐intensive autoxidation process presently used in industry, but much remains unknown about this two‐electron oxygen reduction reaction (2e‐ORR), especially the local proton effect. Here, we have investigated the function of hydrogen‐associated intermediates in the 2e‐ORR using a rationally designed cooperative electrode material with cobalt (II) clusters embedded onto the oxidized carbon nanotube composites (Co‐OCNT). We found that the local proton availability can determine both the reaction kinetics and selectivity. A 2e‐ORR process involving hydrogen radical transfer is confirmed. Specifically, the carbon sites from the OCNTs promote proton production, and the cobalt sites from the Co cluster facilitate ORR intermediate formation. The high local proton availability and the cooperative dual‐active sites both contribute to the superior reaction kinetics and selectivity of the Co‐OCNT, reaching an H2O2 production rate of ~13.4 mol gcat‐1 h‐1 and a faradaic efficiency of 90% at a current density of 100 mA cm‐2. Further cascading the 2e‐ORR with the electro‐Fenton process shows a high selectivity of oxalic acid up to 97% for the valorization of ethylene glycol.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氢自由基可将工业级氧气电还原成过氧化氢
以可再生电力为动力,从氧气和水电化学合成过氧化氢,为目前工业中使用的高能耗自氧化工艺提供了极具吸引力的替代方案,但关于这种双电子氧还原反应(2e-ORR),尤其是局部质子效应,仍有许多未知之处。在这里,我们使用一种合理设计的合作电极材料,在氧化碳纳米管复合材料(Co-OCNT)上嵌入钴(II)团簇,研究了氢相关中间产物在 2e-ORR 中的功能。我们发现,局部质子的可用性可以决定反应动力学和选择性。涉及氢自由基转移的 2e-ORR 过程得到了证实。具体来说,OCNT 的碳位点促进了质子的产生,而 Co 簇的钴位点促进了 ORR 中间体的形成。在 100 mA cm-2 的电流密度下,H2O2 生成率达到约 13.4 mol gcat-1 h-1,法拉第效率达到 90%。进一步将 2e-ORR 与电-芬顿过程级联后,草酸的选择性高达 97%,可用于乙二醇的价值化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Visualization and Quantification of Single-Base m6A Methylation Subtle Modifications in Interface Configurations of Iron/Cobalt Phthalocyanine-based Electrocatalysts Determine Molecular CO2 Reduction Activities Switching Residues: A Platform for the Synthesis of Fidaxomicin Antibiotics A Helical Tubular Dyad of [9]Cycloparaphenylene: Synthesis, Chiroptical Properties and Post-functionalization A Chlorine-Resistant Self-Doped Nanocarbon Catalyst for Boosting Hydrogen Peroxide Synthesis in Seawater
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1