{"title":"Hydrogen radical enabling industrial‐level oxygen electroreduction to hydrogen peroxide","authors":"Song Xue, Xiaohui Li, Yuanyuan Sun, Wangyang Cui, Fengliang Cao, Zhisheng Cao, Yin Huang, Mingzheng Shao, Zhongtao Li, Linjie Zhi","doi":"10.1002/anie.202420063","DOIUrl":null,"url":null,"abstract":"The electrochemical synthesis of hydrogen peroxide from oxygen and water, powered by renewable electricity, provides a highly attractive alternative to the energy‐intensive autoxidation process presently used in industry, but much remains unknown about this two‐electron oxygen reduction reaction (2e‐ORR), especially the local proton effect. Here, we have investigated the function of hydrogen‐associated intermediates in the 2e‐ORR using a rationally designed cooperative electrode material with cobalt (II) clusters embedded onto the oxidized carbon nanotube composites (Co‐OCNT). We found that the local proton availability can determine both the reaction kinetics and selectivity. A 2e‐ORR process involving hydrogen radical transfer is confirmed. Specifically, the carbon sites from the OCNTs promote proton production, and the cobalt sites from the Co cluster facilitate ORR intermediate formation. The high local proton availability and the cooperative dual‐active sites both contribute to the superior reaction kinetics and selectivity of the Co‐OCNT, reaching an H2O2 production rate of ~13.4 mol gcat‐1 h‐1 and a faradaic efficiency of 90% at a current density of 100 mA cm‐2. Further cascading the 2e‐ORR with the electro‐Fenton process shows a high selectivity of oxalic acid up to 97% for the valorization of ethylene glycol.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"469 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420063","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The electrochemical synthesis of hydrogen peroxide from oxygen and water, powered by renewable electricity, provides a highly attractive alternative to the energy‐intensive autoxidation process presently used in industry, but much remains unknown about this two‐electron oxygen reduction reaction (2e‐ORR), especially the local proton effect. Here, we have investigated the function of hydrogen‐associated intermediates in the 2e‐ORR using a rationally designed cooperative electrode material with cobalt (II) clusters embedded onto the oxidized carbon nanotube composites (Co‐OCNT). We found that the local proton availability can determine both the reaction kinetics and selectivity. A 2e‐ORR process involving hydrogen radical transfer is confirmed. Specifically, the carbon sites from the OCNTs promote proton production, and the cobalt sites from the Co cluster facilitate ORR intermediate formation. The high local proton availability and the cooperative dual‐active sites both contribute to the superior reaction kinetics and selectivity of the Co‐OCNT, reaching an H2O2 production rate of ~13.4 mol gcat‐1 h‐1 and a faradaic efficiency of 90% at a current density of 100 mA cm‐2. Further cascading the 2e‐ORR with the electro‐Fenton process shows a high selectivity of oxalic acid up to 97% for the valorization of ethylene glycol.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.