Correlation Verification for Image Retrieval and Its Memory Footprint Optimization

Seongwon Lee;Hongje Seong;Suhyeon Lee;Euntai Kim
{"title":"Correlation Verification for Image Retrieval and Its Memory Footprint Optimization","authors":"Seongwon Lee;Hongje Seong;Suhyeon Lee;Euntai Kim","doi":"10.1109/TPAMI.2024.3504274","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel image retrieval network named Correlation Verification Network (CVNet) to replace the conventional geometric re-ranking with a 4D convolutional neural network that learns diverse geometric matching possibilities. To enable efficient cross-scale matching, we construct feature pyramids and establish cross-scale feature correlations in a single inference, thereby replacing the costly multi-scale inference. Additionally, we employ curriculum learning with the Hide-and-Seek strategy to handle challenging samples. Our proposed CVNet demonstrates state-of-the-art performance on several image retrieval benchmarks by a large margin. From an implementation perspective, however, CVNet has one drawback: it requires high memory usage because it needs to store dense features of all database images. This high memory requirement can be a significant limitation in practical applications. To address this issue, we introduce an extension of CVNet called Dense-to-Sparse CVNet (CVNet<inline-formula><tex-math>$^{DS}$</tex-math></inline-formula>), which can significantly reduce memory usage by sparsifying the features of the database images. The sparsification module in CVNet<inline-formula><tex-math>$^{DS}$</tex-math></inline-formula> learns to select the relevant parts of image features end-to-end using a Gumbel estimator. Since the sparsification is performed offline, CVNet<inline-formula><tex-math>$^{DS}$</tex-math></inline-formula> does not increase online extraction and matching times. CVNet<inline-formula><tex-math>$^{DS}$</tex-math></inline-formula> dramatically reduces the memory footprint while preserving performance levels nearly identical to CVNet.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 3","pages":"1514-1529"},"PeriodicalIF":18.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10759842/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a novel image retrieval network named Correlation Verification Network (CVNet) to replace the conventional geometric re-ranking with a 4D convolutional neural network that learns diverse geometric matching possibilities. To enable efficient cross-scale matching, we construct feature pyramids and establish cross-scale feature correlations in a single inference, thereby replacing the costly multi-scale inference. Additionally, we employ curriculum learning with the Hide-and-Seek strategy to handle challenging samples. Our proposed CVNet demonstrates state-of-the-art performance on several image retrieval benchmarks by a large margin. From an implementation perspective, however, CVNet has one drawback: it requires high memory usage because it needs to store dense features of all database images. This high memory requirement can be a significant limitation in practical applications. To address this issue, we introduce an extension of CVNet called Dense-to-Sparse CVNet (CVNet$^{DS}$), which can significantly reduce memory usage by sparsifying the features of the database images. The sparsification module in CVNet$^{DS}$ learns to select the relevant parts of image features end-to-end using a Gumbel estimator. Since the sparsification is performed offline, CVNet$^{DS}$ does not increase online extraction and matching times. CVNet$^{DS}$ dramatically reduces the memory footprint while preserving performance levels nearly identical to CVNet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像检索的相关性验证及其内存足迹优化
本文提出了一种新的图像检索网络——关联验证网络(CVNet),用一种学习多种几何匹配可能性的4D卷积神经网络取代传统的几何重新排序。为了实现高效的跨尺度匹配,我们在单个推理中构建特征金字塔并建立跨尺度特征相关性,从而取代代价高昂的多尺度推理。此外,我们采用课程学习与捉迷藏策略来处理具有挑战性的样本。我们提出的CVNet在几个图像检索基准上展示了最先进的性能。然而,从实现的角度来看,CVNet有一个缺点:它需要高内存使用,因为它需要存储所有数据库映像的密集特征。这种高内存需求在实际应用中可能是一个重大限制。为了解决这个问题,我们引入了CVNet的扩展,称为Dense-to-Sparse CVNet (CVNet$^{DS}$),它可以通过稀疏化数据库图像的特征来显著减少内存使用。CVNet$^{DS}$中的稀疏化模块使用Gumbel估计器学习端到端选择图像特征的相关部分。由于稀疏化是离线执行的,因此CVNet$^{DS}$不会增加在线提取和匹配时间。CVNet$^{DS}$显著减少内存占用,同时保持性能水平几乎相同的CVNet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Examining the Impact of Optical Aberrations to Image Classification and Object Detection Models. Neural Eigenfunctions are Structured Representation Learners. Distribution-to-Points Matching for Image Text Retrieval. Penny-Wise and Pound-Foolish in AI-Generated Image Detection. Enhancing Adversarial Transferability with Cost-efficient Landscape Flattening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1