Highly Efficient Chiral Separation Based on Alkali-proof Protein Immobilization by Covalent Organic Frameworks

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-11-22 DOI:10.1002/anie.202420269
Mingfang Yang, Yunlong Zheng, Yuqing Cai, Jinbiao Guo, Along Zuo, Jiangyue Yu, Sainan Zhang, Zhenjie Zhang, Yao Chen
{"title":"Highly Efficient Chiral Separation Based on Alkali-proof Protein Immobilization by Covalent Organic Frameworks","authors":"Mingfang Yang, Yunlong Zheng, Yuqing Cai, Jinbiao Guo, Along Zuo, Jiangyue Yu, Sainan Zhang, Zhenjie Zhang, Yao Chen","doi":"10.1002/anie.202420269","DOIUrl":null,"url":null,"abstract":"Chiral separation plays a pivotal role in both practical applications and industrial productions. However, traditional chiral stationary phases (CSPs) exhibit inherent instability in alkaline environments, presenting a significant challenge despite their importance. Herein, basophilic alcalase is creatively developed to fabricate ultrastable protein-based CSPs that can efficiently work under alkaline conditions. An in-depth theoretical simulation is conducted to unveil the unique three-dimensional conformation of alcalase, showing selective affinity towards various enantiomers of chiral amino acids and drugs, especially acidic substrates. Subsequently, an in situ assembly strategy is used to immobilize alcalase within a hydrazone-linked covalent organic framework (COF) platform. The generated protein-based CSPs enable successful baseline separation (resolution ≥ 1.50) for various value-added compounds (e.g., non-steroidal drug, RS-flurbiprofen; nucleotide analog, RS-tenofovir) via high-performance liquid chromatography, surpassing the commercial chiral column. Furthermore, a systematic study reveals that increasing hydrophilicity and pore sizes of COFs can enhance the separation performance. Remarkably, the obtained CSPs demonstrated exceptional durability, maintaining performance for >2,400 runs. This study provides a new membrane to the protein library for CSPs, and represents an innovative and effective platform for CSPs with immense potential for the enantioseparation of acidic drugs.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"23 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420269","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Chiral separation plays a pivotal role in both practical applications and industrial productions. However, traditional chiral stationary phases (CSPs) exhibit inherent instability in alkaline environments, presenting a significant challenge despite their importance. Herein, basophilic alcalase is creatively developed to fabricate ultrastable protein-based CSPs that can efficiently work under alkaline conditions. An in-depth theoretical simulation is conducted to unveil the unique three-dimensional conformation of alcalase, showing selective affinity towards various enantiomers of chiral amino acids and drugs, especially acidic substrates. Subsequently, an in situ assembly strategy is used to immobilize alcalase within a hydrazone-linked covalent organic framework (COF) platform. The generated protein-based CSPs enable successful baseline separation (resolution ≥ 1.50) for various value-added compounds (e.g., non-steroidal drug, RS-flurbiprofen; nucleotide analog, RS-tenofovir) via high-performance liquid chromatography, surpassing the commercial chiral column. Furthermore, a systematic study reveals that increasing hydrophilicity and pore sizes of COFs can enhance the separation performance. Remarkably, the obtained CSPs demonstrated exceptional durability, maintaining performance for >2,400 runs. This study provides a new membrane to the protein library for CSPs, and represents an innovative and effective platform for CSPs with immense potential for the enantioseparation of acidic drugs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于共价有机框架固定耐碱蛋白质的高效手性分离技术
手性分离在实际应用和工业生产中都起着举足轻重的作用。然而,传统的手性固定相(CSP)在碱性环境中表现出固有的不稳定性,尽管其重要性不言而喻,但却带来了巨大的挑战。本文创造性地开发了嗜碱性丙二酸酶,以制造可在碱性条件下高效工作的超稳定蛋白质型 CSP。通过深入的理论模拟,揭示了炼金术酶独特的三维构象,显示出对各种手性氨基酸和药物(尤其是酸性底物)对映体的选择性亲和力。随后,利用原位组装策略将炼糖酶固定在肼键共价有机框架(COF)平台内。生成的基于蛋白质的 CSP 通过高效液相色谱法成功实现了各种高附加值化合物(如非甾体类药物 RS-氟比洛芬、核苷酸类似物 RS-替诺福韦)的基线分离(分辨率≥ 1.50),超过了商用手性色谱柱。此外,系统研究还发现,增加 COF 的亲水性和孔径可提高分离性能。值得注意的是,所获得的 CSP 具有优异的耐久性,可在 2,400 次运行中保持性能。这项研究为 CSP 蛋白库提供了一种新的膜,代表了一种创新而有效的 CSP 平台,在酸性药物的对映体分离方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
4D Printing of Liquid Crystal Emulsions for Smart Structures with Multiple Functionalities Hydrogen radical enabling industrial‐level oxygen electroreduction to hydrogen peroxide Highly Efficient Chiral Separation Based on Alkali-proof Protein Immobilization by Covalent Organic Frameworks Single Atomic Cu–C3 Sites Catalyzed Interfacial Chemistry in Bi@C for Ultra–Stable and Ultrafast Sodium–Ion Batteries Bienzymatic Dynamic Kinetic Resolution of Secondary Alcohols by Esterification/Racemization in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1