{"title":"Facile synthesis of in situ carbon-coated CoS2 micro/nano-spheres as high-performance anode materials for sodium-ion batteries","authors":"Lingling Chen, Pengfei Wang, Chen Bao, Yanyan Li, Bo Fan, Gaofeng Li, Dianbo Ruan","doi":"10.1039/d4nr03503h","DOIUrl":null,"url":null,"abstract":"<em>In situ</em> carbon-coated CoS<small><sub>2</sub></small> micro/nano-spheres were successfully prepared by sulfuric calcination using the solvothermal method with glycerol as the carbon source without introducing extraneous carbon. This method prevents carbon agglomeration and avoids the cumbersome steps of the current technology. The composite demonstrates excellent sodium storage capacity as an anode material for sodium-ion batteries. The initial charge and discharge capacities were 1027 and 1224 mA h g<small><sup>−1</sup></small> at 50 mA g<small><sup>−1</sup></small>, respectively, with an initial coulombic efficiency of 83.9%. The capacity of CoS<small><sub>2</sub></small>@C at 350 °C was maintained at 937 mA h g<small><sup>−1</sup></small> after 140 cycles at a current density of 2 A g<small><sup>−1</sup></small>. The outstanding electrochemical performance is mainly attributed to the nanostructure design and the presence of <em>in situ</em> carbon. As revealed by the kinetic analysis, the pseudo-capacitive behaviour also contributed to the excellent electrochemical performance.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"234 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr03503h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In situ carbon-coated CoS2 micro/nano-spheres were successfully prepared by sulfuric calcination using the solvothermal method with glycerol as the carbon source without introducing extraneous carbon. This method prevents carbon agglomeration and avoids the cumbersome steps of the current technology. The composite demonstrates excellent sodium storage capacity as an anode material for sodium-ion batteries. The initial charge and discharge capacities were 1027 and 1224 mA h g−1 at 50 mA g−1, respectively, with an initial coulombic efficiency of 83.9%. The capacity of CoS2@C at 350 °C was maintained at 937 mA h g−1 after 140 cycles at a current density of 2 A g−1. The outstanding electrochemical performance is mainly attributed to the nanostructure design and the presence of in situ carbon. As revealed by the kinetic analysis, the pseudo-capacitive behaviour also contributed to the excellent electrochemical performance.
以甘油为碳源,采用溶热法进行硫煅烧,在不引入外来碳的情况下成功制备了原位碳涂层 CoS2 微/纳米球。这种方法可防止碳团聚,并避免了现有技术的繁琐步骤。作为钠离子电池的阳极材料,这种复合材料具有出色的钠储存能力。在 50 mA g-1 的条件下,初始充放电容量分别为 1027 mA h g-1 和 1224 mA h g-1,初始库仑效率为 83.9%。在电流密度为 2 A g-1 的条件下,CoS2@C 在 350 °C 下循环 140 次后,其容量保持在 937 mA h g-1。出色的电化学性能主要归功于纳米结构设计和原位碳的存在。动力学分析表明,伪电容行为也为优异的电化学性能做出了贡献。
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.