Covalent DNA-Encoded Library Workflow Drives Discovery of SARS-CoV-2 Nonstructural Protein Inhibitors

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-11-22 DOI:10.1021/jacs.4c12992
Xudong Wang, Liwei Xiong, Ying Zhu, Sixiu Liu, Wenfeng Zhao, Xinyuan Wu, Mengnisa Seydimemet, Linjie Li, Peiqi Ding, Xian Lin, Jiaxiang Liu, Xuan Wang, Zhiqiang Duan, Weiwei Lu, Yanrui Suo, Mengqing Cui, Jinfeng Yue, Rui Jin, Mingyue Zheng, Yechun Xu, Lianghe Mei, Hangchen Hu, Xiaojie Lu
{"title":"Covalent DNA-Encoded Library Workflow Drives Discovery of SARS-CoV-2 Nonstructural Protein Inhibitors","authors":"Xudong Wang, Liwei Xiong, Ying Zhu, Sixiu Liu, Wenfeng Zhao, Xinyuan Wu, Mengnisa Seydimemet, Linjie Li, Peiqi Ding, Xian Lin, Jiaxiang Liu, Xuan Wang, Zhiqiang Duan, Weiwei Lu, Yanrui Suo, Mengqing Cui, Jinfeng Yue, Rui Jin, Mingyue Zheng, Yechun Xu, Lianghe Mei, Hangchen Hu, Xiaojie Lu","doi":"10.1021/jacs.4c12992","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic, exacerbated by persistent viral mutations, underscored the urgent need for diverse inhibitors targeting multiple viral proteins. In this study, we utilized covalent DNA-encoded libraries to discover innovative triazine-based covalent inhibitors for the 3-chymotrypsin-like protease (3CL<sup>pro</sup>, Nsp5) and the papain-like protease (PL<sup>pro</sup>) domains of Nsp3, as well as novel non-nucleoside covalent inhibitors for the nonstructural protein 12 (Nsp12, RdRp). Optimization through molecular docking and medicinal chemistry led to the development of <b>LU9</b>, a nonpeptide 3CL<sup>pro</sup> inhibitor with an IC<sub>50</sub> of 0.34 μM, and <b>LU10</b>, whose crystal structure showed a distinct binding mode within the 3CL<sup>pro</sup> active site. The X-ray cocrystal structure of SARS-CoV-2 PL<sup>pro</sup> in complex with <b>XD5</b> uncovered a previously unexplored binding site adjacent to the catalytic pocket. Additionally, a non-nucleoside covalent Nsp12 inhibitor <b>XJ5</b> achieved a potency of 0.12 μM following comprehensive structure–activity relationship analysis and optimization. Molecular dynamics revealed a potential binding mode. These compounds offer valuable chemical probes for target validation and represent promising candidates for the development of SARS-CoV-2 antiviral therapies.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"23 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12992","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic, exacerbated by persistent viral mutations, underscored the urgent need for diverse inhibitors targeting multiple viral proteins. In this study, we utilized covalent DNA-encoded libraries to discover innovative triazine-based covalent inhibitors for the 3-chymotrypsin-like protease (3CLpro, Nsp5) and the papain-like protease (PLpro) domains of Nsp3, as well as novel non-nucleoside covalent inhibitors for the nonstructural protein 12 (Nsp12, RdRp). Optimization through molecular docking and medicinal chemistry led to the development of LU9, a nonpeptide 3CLpro inhibitor with an IC50 of 0.34 μM, and LU10, whose crystal structure showed a distinct binding mode within the 3CLpro active site. The X-ray cocrystal structure of SARS-CoV-2 PLpro in complex with XD5 uncovered a previously unexplored binding site adjacent to the catalytic pocket. Additionally, a non-nucleoside covalent Nsp12 inhibitor XJ5 achieved a potency of 0.12 μM following comprehensive structure–activity relationship analysis and optimization. Molecular dynamics revealed a potential binding mode. These compounds offer valuable chemical probes for target validation and represent promising candidates for the development of SARS-CoV-2 antiviral therapies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共价 DNA 编码库工作流程推动了 SARS-CoV-2 非结构蛋白抑制剂的发现
COVID-19大流行因病毒的持续突变而加剧,这凸显了对针对多种病毒蛋白的多样化抑制剂的迫切需求。在这项研究中,我们利用共价 DNA 编码文库发现了创新的三嗪类共价抑制剂,用于抑制 Nsp3 的 3-糜蛋白酶样蛋白酶(3CLpro,Nsp5)和木瓜蛋白酶样蛋白酶(PLpro)结构域,以及非结构蛋白 12(Nsp12,RdRp)的新型非核苷类共价抑制剂。通过分子对接和药物化学的优化,开发出了 LU9(一种 IC50 为 0.34 μM 的非肽 3CLpro 抑制剂)和 LU10(其晶体结构显示了 3CLpro 活性位点内独特的结合模式)。SARS-CoV-2 PLpro 与 XD5 复合物的 X 射线共晶体结构发现了一个以前未曾探索过的与催化口袋相邻的结合位点。此外,经过全面的结构-活性关系分析和优化,一种非核苷共价 Nsp12 抑制剂 XJ5 的效力达到了 0.12 μM。分子动力学揭示了一种潜在的结合模式。这些化合物为靶点验证提供了宝贵的化学探针,是开发 SARS-CoV-2 抗病毒疗法的有希望的候选化合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Hydrogen Isotope Labeling of Pharmaceuticals Via Dual Hydrogen Isotope Exchange Pathways Using CdS Quantum Dot Photocatalyst Oxygen Vacancy Boosts Nitrogen-Centered Radical Coupling Initiated by Primary Amine Electrooxidation Synthesis of Multisubstituted Cyclopentadiene Derivatives from 3,3-Disubstituted Cyclopropenes and Internal Alkynes Catalyzed by Low-Valent Niobium Complexes Molecular Design of Phthalocyanine-Based Drug Coassembly with Tailored Function Generative Pretrained Transformer for Heterogeneous Catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1