In situ digital image correlation study on the mechanical properties of GH4169 at different temperatures
In-situ-Studie zur digitalen Bildkorrelation der mechanischen Eigenschaften von GH4169 bei verschiedenen Temperaturen
X. Y. Wu, J. Zhu, J. W. Liu, S. Y. Wang, X. H. Hou, X. Jiang, F. C. Lang, Y. M. Xing
{"title":"In situ digital image correlation study on the mechanical properties of GH4169 at different temperatures\n In-situ-Studie zur digitalen Bildkorrelation der mechanischen Eigenschaften von GH4169 bei verschiedenen Temperaturen","authors":"X. Y. Wu, J. Zhu, J. W. Liu, S. Y. Wang, X. H. Hou, X. Jiang, F. C. Lang, Y. M. Xing","doi":"10.1002/mawe.202300392","DOIUrl":null,"url":null,"abstract":"<p>GH4169 is a precipitation-strengthened nickel-based high-temperature alloy, and its mechanical behavior at different temperatures is of significant importance for practical applications. Here, an in situ study on the mechanical properties and microstructural evolution of the GH4169 alloy at different temperatures was conducted using scanning electron microscopy in combination with digital image correlation. The results demonstrate the existence of a linear relationship between the local average strain and the macroscopic strain. At temperatures of 20 °C, 100 °C, 180 °C, and 260 °C, the local average strain is 1.96, 2.13, 2.26, and 2.30 times the macroscopic strain, respectively, which shows a clear trend. This indicates that the temperature has a significant influence on the plasticity of the alloy. Additionally, the strain is concentrated below the notch, whereby at a macroscopic strain of 1.7 % at 20 °C and 260 °C, the local maximum strain at the notch is 52 % and 83 %, respectively. Furthermore, when the macroscopic strain reaches 2.12 %, the local maximum strain at the notch is 72 % and 103 %, respectively. At this point, cracks start to initiate and gradually propagate. In situ observations show that at the beginning of the tensile plasticity stage, the plastic strain rate in the grains is twice the rate at the grain boundaries; subsequently, both rates tend to stabilize, and a high-strain zone appears inside the grains and is coordinately transferred to the surrounding grains through the grain boundaries. The final stage of damage of the alloy consists of perforation fracture, and the presence of a large number of cracked carbides at the fracture results in specimen cracking.</p>","PeriodicalId":18366,"journal":{"name":"Materialwissenschaft und Werkstofftechnik","volume":"55 11","pages":"1549-1561"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materialwissenschaft und Werkstofftechnik","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mawe.202300392","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
GH4169 is a precipitation-strengthened nickel-based high-temperature alloy, and its mechanical behavior at different temperatures is of significant importance for practical applications. Here, an in situ study on the mechanical properties and microstructural evolution of the GH4169 alloy at different temperatures was conducted using scanning electron microscopy in combination with digital image correlation. The results demonstrate the existence of a linear relationship between the local average strain and the macroscopic strain. At temperatures of 20 °C, 100 °C, 180 °C, and 260 °C, the local average strain is 1.96, 2.13, 2.26, and 2.30 times the macroscopic strain, respectively, which shows a clear trend. This indicates that the temperature has a significant influence on the plasticity of the alloy. Additionally, the strain is concentrated below the notch, whereby at a macroscopic strain of 1.7 % at 20 °C and 260 °C, the local maximum strain at the notch is 52 % and 83 %, respectively. Furthermore, when the macroscopic strain reaches 2.12 %, the local maximum strain at the notch is 72 % and 103 %, respectively. At this point, cracks start to initiate and gradually propagate. In situ observations show that at the beginning of the tensile plasticity stage, the plastic strain rate in the grains is twice the rate at the grain boundaries; subsequently, both rates tend to stabilize, and a high-strain zone appears inside the grains and is coordinately transferred to the surrounding grains through the grain boundaries. The final stage of damage of the alloy consists of perforation fracture, and the presence of a large number of cracked carbides at the fracture results in specimen cracking.
期刊介绍:
Materialwissenschaft und Werkstofftechnik provides fundamental and practical information for those concerned with materials development, manufacture, and testing.
Both technical and economic aspects are taken into consideration in order to facilitate choice of the material that best suits the purpose at hand. Review articles summarize new developments and offer fresh insight into the various aspects of the discipline.
Recent results regarding material selection, use and testing are described in original articles, which also deal with failure treatment and investigation. Abstracts of new publications from other journals as well as lectures presented at meetings and reports about forthcoming events round off the journal.