Adrian V Hauck, Patric Komforth, Jessica Erlenbusch, Judith Stickdorn, Krzysztof Radacki, Holger Braunschweig, Pol Besenius, Simon Van Herck, Lutz Nuhn
{"title":"Aliphatic polycarbonates with acid degradable ketal side groups as multi-pH-responsive immunodrug nanocarriers.","authors":"Adrian V Hauck, Patric Komforth, Jessica Erlenbusch, Judith Stickdorn, Krzysztof Radacki, Holger Braunschweig, Pol Besenius, Simon Van Herck, Lutz Nuhn","doi":"10.1039/d4bm00949e","DOIUrl":null,"url":null,"abstract":"<p><p>Pharmacokinetics and biodistribution profiles of active substances are crucial aspects for their safe and successful administration. Since many immunogenic compounds do not meet all requirements for safe and effective administration, well-defined drug nanocarrier systems are necessary with a stimuli-responsive drug-release profile. For this purpose, a novel pH-responsive aliphatic cyclic carbonate is introduced with benzyl ketal side chains and polymerized onto a poly(ethylene glycol) macroinitiator. The resulting block copolymers could be formulated <i>via</i> a solvent-evaporation method into well-defined polymeric micelles. The hydrophobic carbonate block was equipped with an acid degradable ketal side group that served as an acid-responsive functional group. Already subtle pH alternations led to micelle disassembly and the release of the active cargo. Furthermore, basic carbonate backbone degradation assured the pH responsiveness of the nanocarriers in both acidic and basic conditions. To investigate the delivery capacity of polymeric micelles, the model small molecule compound CL075, which serves as an immunotherapeutic TLR7/8 agonist, was encapsulated. Incubation studies with human blood plasma revealed the absence of undesirable protein adsorption on the drug-loaded nanoparticles. Furthermore, <i>in vitro</i> applications confirmed cell uptake of the nanodrug formulations by macrophages and the induction of payload-mediated immune stimulation. Altogether, these results underline the huge potential of the developed multi-pH-responsive polymeric nanocarrier for immunodrug delivery.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm00949e","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Pharmacokinetics and biodistribution profiles of active substances are crucial aspects for their safe and successful administration. Since many immunogenic compounds do not meet all requirements for safe and effective administration, well-defined drug nanocarrier systems are necessary with a stimuli-responsive drug-release profile. For this purpose, a novel pH-responsive aliphatic cyclic carbonate is introduced with benzyl ketal side chains and polymerized onto a poly(ethylene glycol) macroinitiator. The resulting block copolymers could be formulated via a solvent-evaporation method into well-defined polymeric micelles. The hydrophobic carbonate block was equipped with an acid degradable ketal side group that served as an acid-responsive functional group. Already subtle pH alternations led to micelle disassembly and the release of the active cargo. Furthermore, basic carbonate backbone degradation assured the pH responsiveness of the nanocarriers in both acidic and basic conditions. To investigate the delivery capacity of polymeric micelles, the model small molecule compound CL075, which serves as an immunotherapeutic TLR7/8 agonist, was encapsulated. Incubation studies with human blood plasma revealed the absence of undesirable protein adsorption on the drug-loaded nanoparticles. Furthermore, in vitro applications confirmed cell uptake of the nanodrug formulations by macrophages and the induction of payload-mediated immune stimulation. Altogether, these results underline the huge potential of the developed multi-pH-responsive polymeric nanocarrier for immunodrug delivery.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.