Enhancing nitrogen removal in combined sewage overflows by using bio-fluidized bed with ceramic waste powder carriers: effects and mechanisms.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES Environmental Science and Pollution Research Pub Date : 2024-11-22 DOI:10.1007/s11356-024-35454-5
Zian Zhou, Xinyuan Zheng, Yinghao Hua, Meixin Guo, Xiaoting Sun, Yan Huang, Liming Dong, Suping Yu
{"title":"Enhancing nitrogen removal in combined sewage overflows by using bio-fluidized bed with ceramic waste powder carriers: effects and mechanisms.","authors":"Zian Zhou, Xinyuan Zheng, Yinghao Hua, Meixin Guo, Xiaoting Sun, Yan Huang, Liming Dong, Suping Yu","doi":"10.1007/s11356-024-35454-5","DOIUrl":null,"url":null,"abstract":"<p><p>Micron-size ceramic waste powder (< 75 μm and 75-150 μm) was used as the carrier in a high-concentration powder carrier bio-fluidized bed (HPB) to treat simulated overflow sewage (CSOs). The sludge extracellular polymers (EPS), electron transfer capacity of EPS, nitrogen removal pathways, and microbiological characteristics were analyzed to gain insights into the nitrogen removal pathways and mechanisms. The results showed that only the effluent from the HPB (< 75 μm) could meet the stringent pollutant discharge standards in China of 50 mg/L for COD<sub>Cr</sub> and 15 mg/L for total nitrogen from beginning to end. Meanwhile, the electrochemical performance tests indicated that the electron accepting and donating capacities of the sludge EPS in the HPB (< 75 μm) were 42.75% and 32.73% higher than those in the conventional activated sludge, meaning that ceramic powder carriers can increase the extracellular electron transfer capacity of the sludge and accelerate the denitrification process. Also, metagenomics analysis results showed that the relative abundances of the denitrification-related Nor genes were 28-39% higher in the HPB (< 75 μm) and HPB (75-150 μm) than in the conventional activated sludge (CAS). These results show that ceramic waste powders have the potential to be used as carriers in HPB systems to treat CSOs.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35454-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Micron-size ceramic waste powder (< 75 μm and 75-150 μm) was used as the carrier in a high-concentration powder carrier bio-fluidized bed (HPB) to treat simulated overflow sewage (CSOs). The sludge extracellular polymers (EPS), electron transfer capacity of EPS, nitrogen removal pathways, and microbiological characteristics were analyzed to gain insights into the nitrogen removal pathways and mechanisms. The results showed that only the effluent from the HPB (< 75 μm) could meet the stringent pollutant discharge standards in China of 50 mg/L for CODCr and 15 mg/L for total nitrogen from beginning to end. Meanwhile, the electrochemical performance tests indicated that the electron accepting and donating capacities of the sludge EPS in the HPB (< 75 μm) were 42.75% and 32.73% higher than those in the conventional activated sludge, meaning that ceramic powder carriers can increase the extracellular electron transfer capacity of the sludge and accelerate the denitrification process. Also, metagenomics analysis results showed that the relative abundances of the denitrification-related Nor genes were 28-39% higher in the HPB (< 75 μm) and HPB (75-150 μm) than in the conventional activated sludge (CAS). These results show that ceramic waste powders have the potential to be used as carriers in HPB systems to treat CSOs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用带有陶瓷废物粉末载体的生物流化床提高合并污水溢流的氮去除率:效果与机制。
微米级陶瓷废粉(Cr)和总氮自始至终为 15 mg/L。同时,电化学性能测试表明,HPB 中污泥 EPS 的电子接受能力和电子捐赠能力 (
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
期刊最新文献
Stacked Ensemble with Machine Learning Regressors on Optimal Features (SMOF) of hyperspectral sensor PRISMA for inland water turbidity prediction. The method of radiation risk assessment based on physico-geographical regionalisation: a case study of Carpathians, Poland. Machine learning-based monitoring and design of managed aquifer rechargers for sustainable groundwater management: scope and challenges. Assessing the economic and environmental performance of a closed-loop supply chain for waste tires: an industrial case study. Background of persistent organic pollutants in estuarine sediments from the Marajó Island, an Amazonian environmental protection area for sustainable use.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1