Adrenic acid: A promising biomarker and therapeutic target (Review).

IF 5.7 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL International journal of molecular medicine Pub Date : 2025-02-01 Epub Date: 2024-11-22 DOI:10.3892/ijmm.2024.5461
Ze Wang, Haoyang Gao, Xiaotong Ma, Danlin Zhu, Linlin Zhao, Weihua Xiao
{"title":"Adrenic acid: A promising biomarker and therapeutic target (Review).","authors":"Ze Wang, Haoyang Gao, Xiaotong Ma, Danlin Zhu, Linlin Zhao, Weihua Xiao","doi":"10.3892/ijmm.2024.5461","DOIUrl":null,"url":null,"abstract":"<p><p>Adrenic acid is a 22‑carbon unsaturated fatty acid that is widely present in the adrenal gland, liver, brain, kidney and vascular system that plays a regulatory role in various pathophysiological processes, such as inflammatory reactions, lipid metabolism, oxidative stress, vascular function, and cell death. Adrenic acid is a potential biomarker for various ailments, including metabolic, neurodegenerative and cardiovascular diseases and cancer. In addition, adrenic acid is influenced by the pharmacological properties of several natural products, such as astragaloside IV, evodiamine, quercetin, kaempferol, Berberine‑baicalin and prebiotics, so it is a promising new target for clinical treatment and drug development. However, the molecular mechanisms by which adrenic acid exerts are unclear. The present study systematically reviewed the biosynthesis and metabolism of adrenic acid, focusing on intrinsic mechanisms that influence the progression of metabolic, cardiovascular and neurological disease. These mechanisms regulate several key processes, including immuno‑inflammatory response, oxidative stress, vascular function and cell death. In addition, the present study explored the potential clinical translational value of adrenic acid as a biomarker and therapeutic target. To the best of our knowledge, the present study is first systematic summary of the mechanisms of action of adrenic acid across a range of diseases. The present study provides understanding of the wide range of metabolic activities of adrenic acid and a basis for further exploring the pathogenesis and therapeutic targets of various diseases.</p>","PeriodicalId":14086,"journal":{"name":"International journal of molecular medicine","volume":"55 2","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11611323/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of molecular medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijmm.2024.5461","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Adrenic acid is a 22‑carbon unsaturated fatty acid that is widely present in the adrenal gland, liver, brain, kidney and vascular system that plays a regulatory role in various pathophysiological processes, such as inflammatory reactions, lipid metabolism, oxidative stress, vascular function, and cell death. Adrenic acid is a potential biomarker for various ailments, including metabolic, neurodegenerative and cardiovascular diseases and cancer. In addition, adrenic acid is influenced by the pharmacological properties of several natural products, such as astragaloside IV, evodiamine, quercetin, kaempferol, Berberine‑baicalin and prebiotics, so it is a promising new target for clinical treatment and drug development. However, the molecular mechanisms by which adrenic acid exerts are unclear. The present study systematically reviewed the biosynthesis and metabolism of adrenic acid, focusing on intrinsic mechanisms that influence the progression of metabolic, cardiovascular and neurological disease. These mechanisms regulate several key processes, including immuno‑inflammatory response, oxidative stress, vascular function and cell death. In addition, the present study explored the potential clinical translational value of adrenic acid as a biomarker and therapeutic target. To the best of our knowledge, the present study is first systematic summary of the mechanisms of action of adrenic acid across a range of diseases. The present study provides understanding of the wide range of metabolic activities of adrenic acid and a basis for further exploring the pathogenesis and therapeutic targets of various diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肾上腺酸:有前景的生物标志物和治疗靶点(综述)。
肾上腺酸是一种 22 碳不饱和脂肪酸,广泛存在于肾上腺、肝脏、大脑、肾脏和血管系统中,在炎症反应、脂质代谢、氧化应激、血管功能和细胞死亡等各种病理生理过程中发挥调节作用。肾上腺酸是代谢性疾病、神经退行性疾病、心血管疾病和癌症等各种疾病的潜在生物标志物。此外,肾上腺酸还受多种天然产物药理特性的影响,如黄芪皂甙 IV、依佛地胺、槲皮素、山柰醇、小檗碱-黄芩苷和益生菌等,因此肾上腺酸是临床治疗和药物开发的一个很有前景的新靶点。然而,肾上腺酸发挥作用的分子机制尚不清楚。本研究系统回顾了肾上腺酸的生物合成和代谢过程,重点研究了影响代谢、心血管和神经系统疾病进展的内在机制。这些机制调节几个关键过程,包括免疫炎症反应、氧化应激、血管功能和细胞死亡。此外,本研究还探讨了肾上腺酸作为生物标志物和治疗靶点的潜在临床转化价值。据我们所知,本研究首次系统总结了肾上腺酸在一系列疾病中的作用机制。本研究为了解肾上腺酸的广泛代谢活动提供了认识,为进一步探索各种疾病的发病机制和治疗靶点奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International journal of molecular medicine
International journal of molecular medicine 医学-医学:研究与实验
CiteScore
12.30
自引率
0.00%
发文量
124
审稿时长
3 months
期刊介绍: The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality. The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research. All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.
期刊最新文献
Research progress on the molecular mechanisms of Saikosaponin D in various diseases (Review). Recent advances in nanomaterials for the detection of mycobacterium tuberculosis (Review). Advancements in omics technologies: Molecular mechanisms of acute lung injury and acute respiratory distress syndrome (Review). Aquaporin‑1 regulates microglial polarization and inflammatory response in traumatic brain injury. Iron metabolism and the tumor microenvironment: A new perspective on cancer intervention and therapy (Review).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1