Lu Zhang, Jun-Bin Wang, Zhen-Yuan Gao, Xiao Wu, Hai-Rong Zhou
{"title":"Inhibition of miR-20a-5p Suppresses Epithelial-Mesenchymal Transition of Colorectal Cancer Cells Through GJA1.","authors":"Lu Zhang, Jun-Bin Wang, Zhen-Yuan Gao, Xiao Wu, Hai-Rong Zhou","doi":"10.1007/s12033-024-01315-2","DOIUrl":null,"url":null,"abstract":"<p><p>This study was designed to clarify the role of GJA1 in colorectal cancer. qPCR was adopted to detect the GJA1 and miR-20a-5p expression levels in tumor tissues and cells; and EdU, Transwell assay, Scratch test to examine the migration, invasion, and proliferation of colorectal cancer cells. The EMT-related protein expression was measured by immunofluorescence and western Blot. The binding relationship between GJA1 and miR-20a-5p was examined using dual luciferase reporting subsystem. In situ hybridization was utilized to examine the miR-20a-5p expression in tumor tissues and metastases. Rescue experiments were performed by simultaneous transfection of sh-GJA1 inhibitor and miR-20a-5p inhibitor. The miR-20a-5p expression was high and the GJA1 expression was low in colorectal cancer tissues and cells. A targeting relationship was found in GJA1 and miR-20a-5p targets. The invasion, migration, and proliferation of colorectal cancer cells can be inhibited by overexpression of GJA1. Meanwhile, overexpression of GJA1 markedly elevated the e-cadherin expression, but reduced the levels of vimentin, α-SMA and n-cadherin expression. miR-20a-5p inhibitor + sh-GJA1 promoted the invasion, migration, and proliferation of colon cancer cells and EMT process. Overall, miR-20a-5p could target GJA1 to down-regulate the GJA1 expression, thereby regulating the EMT response, and ultimately promoting the progression of colorectal cancer.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-024-01315-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study was designed to clarify the role of GJA1 in colorectal cancer. qPCR was adopted to detect the GJA1 and miR-20a-5p expression levels in tumor tissues and cells; and EdU, Transwell assay, Scratch test to examine the migration, invasion, and proliferation of colorectal cancer cells. The EMT-related protein expression was measured by immunofluorescence and western Blot. The binding relationship between GJA1 and miR-20a-5p was examined using dual luciferase reporting subsystem. In situ hybridization was utilized to examine the miR-20a-5p expression in tumor tissues and metastases. Rescue experiments were performed by simultaneous transfection of sh-GJA1 inhibitor and miR-20a-5p inhibitor. The miR-20a-5p expression was high and the GJA1 expression was low in colorectal cancer tissues and cells. A targeting relationship was found in GJA1 and miR-20a-5p targets. The invasion, migration, and proliferation of colorectal cancer cells can be inhibited by overexpression of GJA1. Meanwhile, overexpression of GJA1 markedly elevated the e-cadherin expression, but reduced the levels of vimentin, α-SMA and n-cadherin expression. miR-20a-5p inhibitor + sh-GJA1 promoted the invasion, migration, and proliferation of colon cancer cells and EMT process. Overall, miR-20a-5p could target GJA1 to down-regulate the GJA1 expression, thereby regulating the EMT response, and ultimately promoting the progression of colorectal cancer.
期刊介绍:
Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.