Chan Tian, Chunyan Ye, Haiyan Guo, Kun Lu, Juan Yang, Xiao Wang, Xinyuan Ge, Chengxiao Yu, Jing Lu, Longfeng Jiang, Qun Zhang, Ci Song
{"title":"Liver Elastography-based Risk Score for Predicting Hepatocellular Carcinoma Risk.","authors":"Chan Tian, Chunyan Ye, Haiyan Guo, Kun Lu, Juan Yang, Xiao Wang, Xinyuan Ge, Chengxiao Yu, Jing Lu, Longfeng Jiang, Qun Zhang, Ci Song","doi":"10.1093/jnci/djae304","DOIUrl":null,"url":null,"abstract":"<p><strong>Background & aims: </strong>Liver stiffness measurement (LSM) via vibration-controlled transient elastography (VCTE) accurately assesses fibrosis. We aimed to develop a universal risk score for predicting hepatocellular carcinoma (HCC) development in patients with chronic hepatitis.</p><p><strong>Methods: </strong>We systematically selected predictors and developed the risk prediction model (HCC-LSM) in the HBV training cohort (n = 2,251, median follow-up of 3.2 years). The HCC-LSM model was validated in an independent HBV validation cohort (n = 1,191, median follow-up of 5.7 years) and a non-viral chronic liver disease (CLD) extrapolation cohort (n = 1,189, median follow-up of 3.3 years). A HCC risk score was then constructed based on a nomogram. An online risk evaluation tool (LEBER) was developed using ChatGPT4.0.</p><p><strong>Results: </strong>Eight routinely available predictors were identified, with LSM levels showing a significant dose-response relationship with HCC incidence (P < .001 by log-rank test). The HCC-LSM model exhibited excellent predictive performance in the HBV training cohort (C-index = 0.866) and the HBV validation cohort (C-index = 0.852), with good performance in the extrapolation CLD cohort (C-index = 0.769). The model demonstrated significantly superior discrimination compared to six previous models across the three cohorts. Cut-off values of 87.2 and 121.1 for the HCC-LSM score categorized participants into low-, medium-, and high-risk groups. An online public risk evaluation tool (LEBER; http://ccra.njmu.edu.cn/LEBER669.html) was developed to facilitate the use of HCC-LSM.</p><p><strong>Conclusion: </strong>The accessible, reliable risk score based on LSM accurately predicted HCC development in patients with chronic hepatitis, providing an effective risk assessment tool for HCC surveillance strategies.</p>","PeriodicalId":14809,"journal":{"name":"JNCI Journal of the National Cancer Institute","volume":" ","pages":""},"PeriodicalIF":9.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JNCI Journal of the National Cancer Institute","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jnci/djae304","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background & aims: Liver stiffness measurement (LSM) via vibration-controlled transient elastography (VCTE) accurately assesses fibrosis. We aimed to develop a universal risk score for predicting hepatocellular carcinoma (HCC) development in patients with chronic hepatitis.
Methods: We systematically selected predictors and developed the risk prediction model (HCC-LSM) in the HBV training cohort (n = 2,251, median follow-up of 3.2 years). The HCC-LSM model was validated in an independent HBV validation cohort (n = 1,191, median follow-up of 5.7 years) and a non-viral chronic liver disease (CLD) extrapolation cohort (n = 1,189, median follow-up of 3.3 years). A HCC risk score was then constructed based on a nomogram. An online risk evaluation tool (LEBER) was developed using ChatGPT4.0.
Results: Eight routinely available predictors were identified, with LSM levels showing a significant dose-response relationship with HCC incidence (P < .001 by log-rank test). The HCC-LSM model exhibited excellent predictive performance in the HBV training cohort (C-index = 0.866) and the HBV validation cohort (C-index = 0.852), with good performance in the extrapolation CLD cohort (C-index = 0.769). The model demonstrated significantly superior discrimination compared to six previous models across the three cohorts. Cut-off values of 87.2 and 121.1 for the HCC-LSM score categorized participants into low-, medium-, and high-risk groups. An online public risk evaluation tool (LEBER; http://ccra.njmu.edu.cn/LEBER669.html) was developed to facilitate the use of HCC-LSM.
Conclusion: The accessible, reliable risk score based on LSM accurately predicted HCC development in patients with chronic hepatitis, providing an effective risk assessment tool for HCC surveillance strategies.
期刊介绍:
The Journal of the National Cancer Institute is a reputable publication that undergoes a peer-review process. It is available in both print (ISSN: 0027-8874) and online (ISSN: 1460-2105) formats, with 12 issues released annually. The journal's primary aim is to disseminate innovative and important discoveries in the field of cancer research, with specific emphasis on clinical, epidemiologic, behavioral, and health outcomes studies. Authors are encouraged to submit reviews, minireviews, and commentaries. The journal ensures that submitted manuscripts undergo a rigorous and expedited review to publish scientifically and medically significant findings in a timely manner.