Mutations in unfolded protein response regulator ATF6 cause hearing and vision loss syndrome.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Journal of Clinical Investigation Pub Date : 2024-11-21 DOI:10.1172/JCI175562
Eun-Jin Lee, Kyle Kim, Monica Sophia Diaz-Aguilar, Hyejung Min, Eduardo Chavez, Korina J Steinbergs, Lance A Safarta, Guirong Zhang, Allen F Ryan, Jonathan H Lin
{"title":"Mutations in unfolded protein response regulator ATF6 cause hearing and vision loss syndrome.","authors":"Eun-Jin Lee, Kyle Kim, Monica Sophia Diaz-Aguilar, Hyejung Min, Eduardo Chavez, Korina J Steinbergs, Lance A Safarta, Guirong Zhang, Allen F Ryan, Jonathan H Lin","doi":"10.1172/JCI175562","DOIUrl":null,"url":null,"abstract":"<p><p>Activating transcription factor 6 (Atf6) is a key regulator of the unfolded protein response (UPR) and is important for endoplasmic reticulum (ER) function and protein homeostasis in metazoan cells. Patients carrying loss-of-function ATF6 disease alleles develop the cone dysfunction disorder, achromatopsia. The impact of loss of ATF6 function on other cell types, organs, and diseases in people remains unclear. Here, we reported that progressive sensorineural hearing loss was a notable complaint in some patients carrying ATF6 disease alleles and that Atf6-/- mice also showed progressive auditory deficits affecting both genders. In mice with hearing deficits, we found disorganized stereocilia on hair cells and focal loss of outer hair cells. Transcriptomic analysis of Atf6-/- cochleae revealed marked induction of UPR, especially through the PERK arm. These findings identify ATF6 as an essential regulator of cochlear health and function. Furthermore, they supported that ATF6 inactivation in people causes progressive sensorineural hearing loss as part of a blindness-deafness genetic syndrome targeting hair cells and cone photoreceptors. Lastly, our genetic findings support ER stress as an important pathomechanism underlying cochlear damage and hearing loss with clinical implications for patient lifestyle modifications that minimize environmental/physiologic sources of ER stress to the ear.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI175562","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Activating transcription factor 6 (Atf6) is a key regulator of the unfolded protein response (UPR) and is important for endoplasmic reticulum (ER) function and protein homeostasis in metazoan cells. Patients carrying loss-of-function ATF6 disease alleles develop the cone dysfunction disorder, achromatopsia. The impact of loss of ATF6 function on other cell types, organs, and diseases in people remains unclear. Here, we reported that progressive sensorineural hearing loss was a notable complaint in some patients carrying ATF6 disease alleles and that Atf6-/- mice also showed progressive auditory deficits affecting both genders. In mice with hearing deficits, we found disorganized stereocilia on hair cells and focal loss of outer hair cells. Transcriptomic analysis of Atf6-/- cochleae revealed marked induction of UPR, especially through the PERK arm. These findings identify ATF6 as an essential regulator of cochlear health and function. Furthermore, they supported that ATF6 inactivation in people causes progressive sensorineural hearing loss as part of a blindness-deafness genetic syndrome targeting hair cells and cone photoreceptors. Lastly, our genetic findings support ER stress as an important pathomechanism underlying cochlear damage and hearing loss with clinical implications for patient lifestyle modifications that minimize environmental/physiologic sources of ER stress to the ear.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
未折叠蛋白反应调节器 ATF6 的突变会导致听力和视力丧失综合征。
活化转录因子6(ATF6)是未折叠蛋白反应(UPR)的关键调节因子,对元动物细胞的内质网(ER)功能和蛋白质平衡非常重要。携带 ATF6 功能缺失等位基因的患者会患上锥体功能障碍症--无色觉。ATF6功能缺失对其他细胞类型、器官和人类疾病的影响仍不清楚。在这里,我们报告了在一些携带 ATF6 疾病等位基因的患者中,进行性感音神经性听力损失是一个显著的主诉,ATF6-/-小鼠也表现出进行性听觉障碍,男女均受影响。在出现听力障碍的小鼠中,我们发现毛细胞上的立体纤毛杂乱无章,外毛细胞出现局灶性缺失。对ATF6-/-耳蜗的转录组分析表明,UPR诱导作用明显,尤其是通过PERK臂。这些发现表明 ATF6 是耳蜗健康和功能的重要调节因子。此外,这些研究还证实,ATF6 失活会导致渐进性感音神经性听力损失,这是针对毛细胞和锥体光感受器的失明-失聪遗传综合征的一部分。最后,我们的遗传学研究结果支持ER压力是耳蜗损伤和听力损失的重要病理机制,这对患者改变生活方式,最大限度地减少耳ER压力的环境/生理来源具有临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
期刊最新文献
Mechanosensitive channels TMEM63A and TMEM63B mediate lung inflation-induced surfactant secretion. Structural characterization of human monoclonal antibodies targeting uncommon antigenic sites on spike glycoprotein of SARS-CoV. Ferroptosis of select skin epithelial cells initiates and maintains chronic systemic immune-mediated psoriatic disease. Mutations in unfolded protein response regulator ATF6 cause hearing and vision loss syndrome. An inducible RIPK3-driven necroptotic system enhances cancer cell-based immunotherapy and ensures safety.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1