Multifunctional GAN-based optimization for X-ray tomography under different conditions.

IF 3.2 2区 物理与天体物理 Q2 OPTICS Optics express Pub Date : 2024-11-04 DOI:10.1364/OE.527366
Yu Guan, Shou Zhang, Hongwei Wang, Xingbang Chen, Fuli Wang, Huiqiang Liu
{"title":"Multifunctional GAN-based optimization for X-ray tomography under different conditions.","authors":"Yu Guan, Shou Zhang, Hongwei Wang, Xingbang Chen, Fuli Wang, Huiqiang Liu","doi":"10.1364/OE.527366","DOIUrl":null,"url":null,"abstract":"<p><p>Based on the generative adversarial network (GAN), we present a multifunctional X-ray tomographic protocol for artifact correction, noise suppression, and super-resolution of reconstruction. The protocol mainly consists of a data preprocessing module and multifunctional GAN-based loss function simultaneously dealing with ring artifacts and super-resolution. The experimental protocol removes ring artifacts and improves the contrast-to-noise ratio (CNR) and spatial resolution (SR) of reconstructed images successfully, which shows the capability to adaptively rectify ring artifacts with varying intensities and types while achieving super-resolution. Compared with the main existing deep learning models or conventional tomographic correction methods, it also enables higher processing speed and minimal information loss, especially for images of smaller dimensions. This study provides a robust optimization tool for the equivalent realization of large fields of view and high-resolution X-ray tomography. The experimental datasets were collected from a series of X-ray cone-beam computed tomography scans of biological samples.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 23","pages":"40767-40782"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.527366","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Based on the generative adversarial network (GAN), we present a multifunctional X-ray tomographic protocol for artifact correction, noise suppression, and super-resolution of reconstruction. The protocol mainly consists of a data preprocessing module and multifunctional GAN-based loss function simultaneously dealing with ring artifacts and super-resolution. The experimental protocol removes ring artifacts and improves the contrast-to-noise ratio (CNR) and spatial resolution (SR) of reconstructed images successfully, which shows the capability to adaptively rectify ring artifacts with varying intensities and types while achieving super-resolution. Compared with the main existing deep learning models or conventional tomographic correction methods, it also enables higher processing speed and minimal information loss, especially for images of smaller dimensions. This study provides a robust optimization tool for the equivalent realization of large fields of view and high-resolution X-ray tomography. The experimental datasets were collected from a series of X-ray cone-beam computed tomography scans of biological samples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 GAN 的多功能优化技术,用于不同条件下的 X 射线断层摄影。
基于生成对抗网络(GAN),我们提出了一种多功能 X 射线断层成像协议,用于矫正伪影、抑制噪声和重建超分辨率。该协议主要由数据预处理模块和基于生成式对抗网络的多功能损失函数组成,同时处理环形伪影和超分辨率问题。实验方案成功去除了环状伪影,提高了重建图像的对比度-噪声比(CNR)和空间分辨率(SR),显示了在实现超分辨率的同时自适应修正不同强度和类型的环状伪影的能力。与现有的主要深度学习模型或传统断层校正方法相比,它还能实现更高的处理速度和最小的信息损失,尤其是对于尺寸较小的图像。这项研究为等效实现大视野和高分辨率 X 射线断层成像提供了一种稳健的优化工具。实验数据集来自一系列生物样本的 X 射线锥束计算机断层扫描扫描。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
期刊最新文献
Adaptive generation of optical single-sideband signal with dually modulated EML. Manipulating reflection-type all-dielectric non-local metasurfaces via the parity of a particle number. SSBI counteraction technology in a single photodetector-based direct detection system receiving an independent dual-single sideband signal. Adaptive-modulated fast fluctuation super-resolution microscopy. Measurement and analysis of photoacoustic pressure induced by weak microsecond pulsed light.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1