Tianxuan Feng, Rong Fan, Ronghua Fan, Conghao Wang, Chao Huang, Ang Li, Hanyi Zhang, Yin Cao, Lijing Li
{"title":"Pre- and post-compensation to suppress birefringent walk-off effects of entangled photons.","authors":"Tianxuan Feng, Rong Fan, Ronghua Fan, Conghao Wang, Chao Huang, Ang Li, Hanyi Zhang, Yin Cao, Lijing Li","doi":"10.1364/OE.532386","DOIUrl":null,"url":null,"abstract":"<p><p>Photon-based entanglement sources, crucial for obtaining entangled states, are typically generated via spontaneous parametric down-conversion. However, birefringence in nonlinear crystals causes spatial or temporal walk-off, reducing entangled photon quality. The theoretical analysis attributes birefringent walk-off to dispersive materials curbed by pre- and post-compensation. We experimentally validate this method, enhancing polarization-entangled photon quality. We measured the Bell state along with a violation of CHSH-Bell's inequality by ∼366 standard deviations (S = 2.623 ± 0.0017). Our approach, simple and stable, does not complicate setups. Its applicability extends to optimizing various entanglement source schemes, aiding optical quantum technologies such as computation, sensing, and communication.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"32 23","pages":"40283-40292"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.532386","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Photon-based entanglement sources, crucial for obtaining entangled states, are typically generated via spontaneous parametric down-conversion. However, birefringence in nonlinear crystals causes spatial or temporal walk-off, reducing entangled photon quality. The theoretical analysis attributes birefringent walk-off to dispersive materials curbed by pre- and post-compensation. We experimentally validate this method, enhancing polarization-entangled photon quality. We measured the Bell state along with a violation of CHSH-Bell's inequality by ∼366 standard deviations (S = 2.623 ± 0.0017). Our approach, simple and stable, does not complicate setups. Its applicability extends to optimizing various entanglement source schemes, aiding optical quantum technologies such as computation, sensing, and communication.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.