Evgeny J. Chumin, Mario Dzemidzic, Karmen K. Yoder
{"title":"Intra-striatal dopaminergic inter-subject covariance in social drinkers and non-treatment-seeking alcohol use disorder participants","authors":"Evgeny J. Chumin, Mario Dzemidzic, Karmen K. Yoder","doi":"10.1111/adb.70008","DOIUrl":null,"url":null,"abstract":"<p>One of the neurobiological correlates of alcohol use disorder (AUD) is the disruption of striatal dopaminergic function. Although regional differences in dopamine (DA) tone/function have been well studied, interregional relationships (represented as inter-subject covariance) have not been investigated and may offer a novel avenue for understanding DA tone. Positron emission tomography (PET) data with [<sup>11</sup>C]raclopride in 22 social drinking controls and 17 AUD participants were used to generate group-level striatal covariance (partial Pearson correlation) networks, which were compared edgewise as well as on global network metrics and community structure. An exploratory analysis examined the impact of tobacco cigarette use status. Striatal covariance was validated in an independent publicly available [<sup>18</sup>F]fallypride PET sample of healthy volunteers. Striatal covariance of control participants from both data sets showed a clear bipartition of the network into two distinct communities, one in the anterior and another in the posterior striatum. This organization was disrupted in the AUD participants' network, which showed significantly lower network metrics compared with the control participants' network. Stratification by cigarette use suggests differential consequences on group covariance networks. This work demonstrates that network neuroscience can quantify group differences in striatal DA and that its interregional interactions offer new insight into the consequences of AUD.</p>","PeriodicalId":7289,"journal":{"name":"Addiction Biology","volume":"29 11","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583815/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Addiction Biology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/adb.70008","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the neurobiological correlates of alcohol use disorder (AUD) is the disruption of striatal dopaminergic function. Although regional differences in dopamine (DA) tone/function have been well studied, interregional relationships (represented as inter-subject covariance) have not been investigated and may offer a novel avenue for understanding DA tone. Positron emission tomography (PET) data with [11C]raclopride in 22 social drinking controls and 17 AUD participants were used to generate group-level striatal covariance (partial Pearson correlation) networks, which were compared edgewise as well as on global network metrics and community structure. An exploratory analysis examined the impact of tobacco cigarette use status. Striatal covariance was validated in an independent publicly available [18F]fallypride PET sample of healthy volunteers. Striatal covariance of control participants from both data sets showed a clear bipartition of the network into two distinct communities, one in the anterior and another in the posterior striatum. This organization was disrupted in the AUD participants' network, which showed significantly lower network metrics compared with the control participants' network. Stratification by cigarette use suggests differential consequences on group covariance networks. This work demonstrates that network neuroscience can quantify group differences in striatal DA and that its interregional interactions offer new insight into the consequences of AUD.
期刊介绍:
Addiction Biology is focused on neuroscience contributions and it aims to advance our understanding of the action of drugs of abuse and addictive processes. Papers are accepted in both animal experimentation or clinical research. The content is geared towards behavioral, molecular, genetic, biochemical, neuro-biological and pharmacology aspects of these fields.
Addiction Biology includes peer-reviewed original research reports and reviews.
Addiction Biology is published on behalf of the Society for the Study of Addiction to Alcohol and other Drugs (SSA). Members of the Society for the Study of Addiction receive the Journal as part of their annual membership subscription.