The human posterior parietal cortices orthogonalize the representation of different streams of information concurrently coded in visual working memory.
{"title":"The human posterior parietal cortices orthogonalize the representation of different streams of information concurrently coded in visual working memory.","authors":"Yaoda Xu","doi":"10.1371/journal.pbio.3002915","DOIUrl":null,"url":null,"abstract":"<p><p>The key to adaptive visual processing lies in the ability to maintain goal-directed visual representation in the face of distraction. In visual working memory (VWM), distraction may come from the coding of distractors or other concurrently retained targets. This fMRI study reveals a common representational geometry that our brain uses to combat both types of distractions in VWM. Specifically, using fMRI pattern decoding, the human posterior parietal cortex is shown to orthogonalize the representations of different streams of information concurrently coded in VWM, whether they are targets and distractors, or different targets concurrently held in VWM. The latter is also seen in the human occipitotemporal cortex. Such a representational geometry provides an elegant and simple solution to enable independent information readout, effectively combating distraction from the different streams of information, while accommodating their concurrent representations. This representational scheme differs from mechanisms that actively suppress or block the encoding of distractors to reduce interference. It is likely a general neural representational principle that supports our ability to represent information beyond VWM in other situations where multiple streams of visual information are tracked and processed simultaneously.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 11","pages":"e3002915"},"PeriodicalIF":9.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002915","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
The key to adaptive visual processing lies in the ability to maintain goal-directed visual representation in the face of distraction. In visual working memory (VWM), distraction may come from the coding of distractors or other concurrently retained targets. This fMRI study reveals a common representational geometry that our brain uses to combat both types of distractions in VWM. Specifically, using fMRI pattern decoding, the human posterior parietal cortex is shown to orthogonalize the representations of different streams of information concurrently coded in VWM, whether they are targets and distractors, or different targets concurrently held in VWM. The latter is also seen in the human occipitotemporal cortex. Such a representational geometry provides an elegant and simple solution to enable independent information readout, effectively combating distraction from the different streams of information, while accommodating their concurrent representations. This representational scheme differs from mechanisms that actively suppress or block the encoding of distractors to reduce interference. It is likely a general neural representational principle that supports our ability to represent information beyond VWM in other situations where multiple streams of visual information are tracked and processed simultaneously.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.