Julie Delyon, Selma Becherirat, Anissa Roger, Mélanie Bernard-Cacciarella, Coralie Reger De Moura, Baptiste Louveau, Samia Mourah, Céleste Lebbé, Nicolas Dumaz
{"title":"PDE4D drives rewiring of the MAPK pathway in BRAF-mutated melanoma resistant to MAPK inhibitors.","authors":"Julie Delyon, Selma Becherirat, Anissa Roger, Mélanie Bernard-Cacciarella, Coralie Reger De Moura, Baptiste Louveau, Samia Mourah, Céleste Lebbé, Nicolas Dumaz","doi":"10.1186/s12964-024-01941-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Phosphodiesterase type 4D (PDE4D) breaks down cyclic AMP (cAMP) reducing the signaling of this intracellular second messenger which plays a major role in melanocyte pathophysiology. In advanced melanoma, expression of PDE4D is increased, plays a role in tumor invasion and is negatively associated with survival. In the current work, we investigated the role of PDE4D in the resistance of BRAF-mutated melanoma to mitogen-activated protein kinase (MAPK) pathway-targeted therapy.</p><p><strong>Methods: </strong>Established human melanoma cell line sensitive and resistant to BRAF and MEK inhibitors and tumor tissues from melanoma patients were used in this study. Immunoblotting was used to analyze protein expression and quantitative reverse transcription-PCR was used to analyze mRNA expression. DNA methylation analysis was evaluated via bisulfite treatment followed by quantitative PCR. Cell viability was measured by clonogenic assays or spheroid cultures. Cell xenograft experiments in immunodeficient mice were used to validate the results in vivo.</p><p><strong>Results: </strong>Analysis of baseline tumors from patients with BRAFV600E-mutated melanoma treated with MAPK inhibitors showed that higher PDE4D expression in situ predicted worse survival in patients. Furthermore, acquired resistance to BRAF and MEK inhibitors was associated with overexpression of PDE4D in situ and ex vivo. The overexpression of the PDE4D5 isoform in melanoma cells resistant to targeted therapies was explained by demethylation or deletion of a CpG island located upstream of the PDE4D5 promoter. We further showed that PDE4D overexpression allowed RAF1 activation, promoting a switch from BRAF to RAF1 isoform in BRAF-mutated melanoma, favoring resistance to BRAF and MEK inhibitors. As a result, pharmacological inhibition of PDE4 activity impeded the proliferation of resistant cells ex vivo and in vivo. The anti-tumorigenic activity of PDE4 inhibitor was achieved via inhibition of the Hippo pathway which plays an important role in resistance to targeted therapies.</p><p><strong>Conclusions: </strong>In summary, our research showed that PDE4D drives rewiring of the MAPK pathway in BRAF-mutated melanoma resistant to MAPK inhibitors and suggests that PDE4 inhibition is a novel therapeutic option for treatment of BRAF-mutated melanoma patients.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"559"},"PeriodicalIF":8.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01941-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Phosphodiesterase type 4D (PDE4D) breaks down cyclic AMP (cAMP) reducing the signaling of this intracellular second messenger which plays a major role in melanocyte pathophysiology. In advanced melanoma, expression of PDE4D is increased, plays a role in tumor invasion and is negatively associated with survival. In the current work, we investigated the role of PDE4D in the resistance of BRAF-mutated melanoma to mitogen-activated protein kinase (MAPK) pathway-targeted therapy.
Methods: Established human melanoma cell line sensitive and resistant to BRAF and MEK inhibitors and tumor tissues from melanoma patients were used in this study. Immunoblotting was used to analyze protein expression and quantitative reverse transcription-PCR was used to analyze mRNA expression. DNA methylation analysis was evaluated via bisulfite treatment followed by quantitative PCR. Cell viability was measured by clonogenic assays or spheroid cultures. Cell xenograft experiments in immunodeficient mice were used to validate the results in vivo.
Results: Analysis of baseline tumors from patients with BRAFV600E-mutated melanoma treated with MAPK inhibitors showed that higher PDE4D expression in situ predicted worse survival in patients. Furthermore, acquired resistance to BRAF and MEK inhibitors was associated with overexpression of PDE4D in situ and ex vivo. The overexpression of the PDE4D5 isoform in melanoma cells resistant to targeted therapies was explained by demethylation or deletion of a CpG island located upstream of the PDE4D5 promoter. We further showed that PDE4D overexpression allowed RAF1 activation, promoting a switch from BRAF to RAF1 isoform in BRAF-mutated melanoma, favoring resistance to BRAF and MEK inhibitors. As a result, pharmacological inhibition of PDE4 activity impeded the proliferation of resistant cells ex vivo and in vivo. The anti-tumorigenic activity of PDE4 inhibitor was achieved via inhibition of the Hippo pathway which plays an important role in resistance to targeted therapies.
Conclusions: In summary, our research showed that PDE4D drives rewiring of the MAPK pathway in BRAF-mutated melanoma resistant to MAPK inhibitors and suggests that PDE4 inhibition is a novel therapeutic option for treatment of BRAF-mutated melanoma patients.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.