Development of triple-helical recombinant collagen-silver hybrid nanofibers for anti-methicillin-resistantStaphylococcus aureus(MRSA) applications.

Caihong Fu, Jianrui Ma, Guangyu Liu, Yirui Fan, Nannan Wei, Jianxi Xiao
{"title":"Development of triple-helical recombinant collagen-silver hybrid nanofibers for anti-methicillin-resistant<i>Staphylococcus aureus</i>(MRSA) applications.","authors":"Caihong Fu, Jianrui Ma, Guangyu Liu, Yirui Fan, Nannan Wei, Jianxi Xiao","doi":"10.1088/1748-605X/ad95d3","DOIUrl":null,"url":null,"abstract":"<p><p>The escalating threat of healthcare-associated infections highlights the urgent need for biocompatible antibacterial materials that effectively combat drug-resistant pathogens. In this study, we present a novel fabrication method for triple-helical recombinant collagen (THRC)-silver hybrid nanofibers, specifically designed for anti-methicillin-resistant<i>staphylococcus aureus</i>(MRSA) applications. Utilizing a silver-mediated crosslinking strategy, we harness a low-power 38 W lamp to enable silver ions (Ag<sup>+</sup>) to mediate crosslinking across various proteins. Mechanistic insights reveal the pivotal role of nine amino acids in facilitating this reaction. The THRC maintains its native structure, forming well-ordered nanofibers, while other globular proteins form a distinctive network-like structure. THRC also serves as a reducing and dispersing agent, facilitating the<i>in situ</i>synthesis of highly dispersed silver nanoparticles (AgNPs) (∼7 nm in diameter) within the nanofibers. Systematic investigation of the reaction conditions between THRC and Ag<sup>+</sup>demonstrates the versatility of this novel approach for nanofiber fabrication. The incorporation of AgNPs imparts exceptional antibacterial activity to the THRC/AgNPs nanofibers, exhibiting a minimum inhibitory concentration of 19.2 mg l<sup>-1</sup>and a minimum bactericidal concentration of 153.6 mg l<sup>-1</sup>against MRSA. This innovative approach holds significant potential for developing antibacterial protein-based biomaterials for infection management in wound healing and other biomedical applications.</p>","PeriodicalId":72389,"journal":{"name":"Biomedical materials (Bristol, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical materials (Bristol, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-605X/ad95d3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The escalating threat of healthcare-associated infections highlights the urgent need for biocompatible antibacterial materials that effectively combat drug-resistant pathogens. In this study, we present a novel fabrication method for triple-helical recombinant collagen (THRC)-silver hybrid nanofibers, specifically designed for anti-methicillin-resistantstaphylococcus aureus(MRSA) applications. Utilizing a silver-mediated crosslinking strategy, we harness a low-power 38 W lamp to enable silver ions (Ag+) to mediate crosslinking across various proteins. Mechanistic insights reveal the pivotal role of nine amino acids in facilitating this reaction. The THRC maintains its native structure, forming well-ordered nanofibers, while other globular proteins form a distinctive network-like structure. THRC also serves as a reducing and dispersing agent, facilitating thein situsynthesis of highly dispersed silver nanoparticles (AgNPs) (∼7 nm in diameter) within the nanofibers. Systematic investigation of the reaction conditions between THRC and Ag+demonstrates the versatility of this novel approach for nanofiber fabrication. The incorporation of AgNPs imparts exceptional antibacterial activity to the THRC/AgNPs nanofibers, exhibiting a minimum inhibitory concentration of 19.2 mg l-1and a minimum bactericidal concentration of 153.6 mg l-1against MRSA. This innovative approach holds significant potential for developing antibacterial protein-based biomaterials for infection management in wound healing and other biomedical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发用于抗耐甲氧西林金黄色葡萄球菌(MRSA)的三重螺旋重组胶原-银混合纳米纤维。
医疗保健相关感染的威胁不断升级,这凸显了人们对生物相容性抗菌材料的迫切需求,这种材料能有效对抗耐药病原体。在这项研究中,我们提出了一种新颖的三螺旋重组胶原蛋白-银混合纳米纤维的制造方法,专门用于抗耐甲氧西林金黄色葡萄球菌(MRSA)。利用银介导的交联策略,我们利用 38 W 的低功率灯管使银离子(Ag+)介导各种蛋白质的交联。机理研究揭示了九个氨基酸在促进这一反应中的关键作用。三螺旋重组胶原蛋白(THRC)保持了其原生结构,形成了有序的纳米纤维,而其他球状蛋白质则形成了独特的网状结构。THRC 还是一种还原剂和分散剂,有助于在纳米纤维内原位合成高度分散的银纳米粒子 (AgNPs)(直径约为 7 纳米)。对 THRC 和 Ag+ 反应条件的系统研究表明,这种新方法在纳米纤维制造方面具有多功能性。AgNPs 的加入使 THRC/AgNPs 纳米纤维具有卓越的抗菌活性,对 MRSA 的最小抑菌浓度 (MIC) 为 19.2 mg/L,最小杀菌浓度 (MBC) 为 153.6 mg/L。这种创新方法为开发基于蛋白质的抗菌生物材料提供了巨大潜力,可用于伤口愈合和其他生物医学应用中的感染控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Osteogenesis promotion on MC3T3 by micro-area potential difference (MAPD) on titanium alloy. An aligned pattern sponge based on gelatin for rapid hemostasis. 3D printedβ-TCP scaffolds loaded with SVVYGLR peptide for promoting revascularization and osteoinduction. Biomaterials for bone tissue engineering: achievements to date and future directions. Inhibition of hepatocellular carcinoma progression by methotrexate-modified pH-sensitive sorafenib and Schisandrin B micelles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1