Evaluation of flexural strength of additively manufactured resin materials compared to auto-polymerized provisional resin with and without hydrothermal aging
Kübra Aycan Tavuz , Nadin Al-Haj Husain , Kiren Jan Mätzener , Mehmet Muzaffer Ateş , Tan Fırat Eyüboğlu , Mutlu Özcan
{"title":"Evaluation of flexural strength of additively manufactured resin materials compared to auto-polymerized provisional resin with and without hydrothermal aging","authors":"Kübra Aycan Tavuz , Nadin Al-Haj Husain , Kiren Jan Mätzener , Mehmet Muzaffer Ateş , Tan Fırat Eyüboğlu , Mutlu Özcan","doi":"10.1016/j.jmbbm.2024.106817","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div><u>Additive manufacturing (AM) technologies are used to fabricate 3D-printed provisional dental restorations. The purpose of this study was to investigate the flexural strength of 3D-printed resins and compare their mechanical performance with those of conventional resins indicated for provisional restorations.</u></div></div><div><h3>Materials and methods</h3><div>This study included six different 3D-printed resin materials, namely (Nextdent (ND); Temp PRINT (TP); Optiprint temp (OT); 3Delta Etemp (DE); Saremco print | CROWNTEC (SA); MED690 (ST)), and one conventional (Protemp (PT)) (Control) provisional resin material. Specimens (N = 168) were prepared (25x2x2 mm<sup>3</sup>) following ISO 10477:2018 guidelines for temporary materials using a printer (Asiga MAX 3D). Post-processing was accomplished following each manufacturer's recommendation. While half of the specimens were tested after 24 H without aging, the other half was subjected to thermomechanical aging in a custom-made chewing simulator (1.200.000 cycles, 5 °C and 55 °C). Flexural strength of the specimens was determined using a Universal Testing Machine. Data were analyzed using two-way ANOVA followed by Tukey's post-hoc test (α = 0.05). Weibull modulus for each group was calculated based on parametric distribution analysis of censored data for maximum fracture load.</div></div><div><h3>Results</h3><div>No significant difference was observed in mean flexural strength (MPa) when non-aged and aged conditions were compared in the OT and PT groups (p>0.05). Groups ND, SA, TP, DE, and ST presented significant differences ranging between 12.67 and 57.39 MPa (p<0.05). All groups presented lower shape and scale values in aged groups compared to their non-aged counterparts. While OT and PT maintained their flexural strength after aging, ND exhibited the highest decrease (30%), followed by DE (23.8%), SA (16.2%), TP (12%), and ST (8.6%) in descending order. Weibull modulus decreased as a function of aging except in group ST.</div></div><div><h3>Conclusion</h3><div>Significant effect of themomechanical aging especially on ND and DE materials should be considered with caution when such materials are indicated as interim or long-term interim provisional restorations. SA and TP exceeded the expectations from a provisional material compared to that of the conventional control material PT.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"161 ","pages":"Article 106817"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124004491","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
Additive manufacturing (AM) technologies are used to fabricate 3D-printed provisional dental restorations. The purpose of this study was to investigate the flexural strength of 3D-printed resins and compare their mechanical performance with those of conventional resins indicated for provisional restorations.
Materials and methods
This study included six different 3D-printed resin materials, namely (Nextdent (ND); Temp PRINT (TP); Optiprint temp (OT); 3Delta Etemp (DE); Saremco print | CROWNTEC (SA); MED690 (ST)), and one conventional (Protemp (PT)) (Control) provisional resin material. Specimens (N = 168) were prepared (25x2x2 mm3) following ISO 10477:2018 guidelines for temporary materials using a printer (Asiga MAX 3D). Post-processing was accomplished following each manufacturer's recommendation. While half of the specimens were tested after 24 H without aging, the other half was subjected to thermomechanical aging in a custom-made chewing simulator (1.200.000 cycles, 5 °C and 55 °C). Flexural strength of the specimens was determined using a Universal Testing Machine. Data were analyzed using two-way ANOVA followed by Tukey's post-hoc test (α = 0.05). Weibull modulus for each group was calculated based on parametric distribution analysis of censored data for maximum fracture load.
Results
No significant difference was observed in mean flexural strength (MPa) when non-aged and aged conditions were compared in the OT and PT groups (p>0.05). Groups ND, SA, TP, DE, and ST presented significant differences ranging between 12.67 and 57.39 MPa (p<0.05). All groups presented lower shape and scale values in aged groups compared to their non-aged counterparts. While OT and PT maintained their flexural strength after aging, ND exhibited the highest decrease (30%), followed by DE (23.8%), SA (16.2%), TP (12%), and ST (8.6%) in descending order. Weibull modulus decreased as a function of aging except in group ST.
Conclusion
Significant effect of themomechanical aging especially on ND and DE materials should be considered with caution when such materials are indicated as interim or long-term interim provisional restorations. SA and TP exceeded the expectations from a provisional material compared to that of the conventional control material PT.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.