{"title":"miRStart 2.0: enhancing miRNA regulatory insights through deep learning-based TSS identification","authors":"Jiatong Xu, Jingting Wan, Hsi-Yuan Huang, Yigang Chen, Yixian Huang, Junyang Huang, Ziyue Zhang, Chang Su, Yuming Zhou, Xingqiao Lin, Yang-Chi-Dung Lin, Hsien-Da Huang","doi":"10.1093/nar/gkae1086","DOIUrl":null,"url":null,"abstract":"MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by binding to the 3′-untranslated regions of target mRNAs, influencing various biological processes at the post-transcriptional level. Identifying miRNA transcription start sites (TSSs) and transcription factors’ (TFs) regulatory roles is crucial for elucidating miRNA function and transcriptional regulation. miRStart 2.0 integrates over 4500 high-throughput datasets across five data types, utilizing a multi-modal approach to annotate 28 828 putative TSSs for 1745 human and 1181 mouse miRNAs, supported by sequencing-based signals. Over 6 million tissue-specific TF–miRNA interactions, integrated from ChIP-seq data, are supplemented by DNase hypersensitivity and UCSC conservation data, with network visualizations. Our deep learning-based model outperforms existing tools in miRNA TSS prediction, achieving the most overlaps with both cell-specific and non-cell-specific validated TSSs. The user-friendly web interface and visualization tools make miRStart 2.0 easily accessible to researchers, enabling efficient identification of miRNA upstream regulatory elements in relation to their TSSs. This updated database provides systems-level insights into gene regulation and disease mechanisms, offering a valuable resource for translational research, facilitating the discovery of novel therapeutic targets and precision medicine strategies. miRStart 2.0 is now accessible at https://awi.cuhk.edu.cn/∼miRStart2.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"20 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1086","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by binding to the 3′-untranslated regions of target mRNAs, influencing various biological processes at the post-transcriptional level. Identifying miRNA transcription start sites (TSSs) and transcription factors’ (TFs) regulatory roles is crucial for elucidating miRNA function and transcriptional regulation. miRStart 2.0 integrates over 4500 high-throughput datasets across five data types, utilizing a multi-modal approach to annotate 28 828 putative TSSs for 1745 human and 1181 mouse miRNAs, supported by sequencing-based signals. Over 6 million tissue-specific TF–miRNA interactions, integrated from ChIP-seq data, are supplemented by DNase hypersensitivity and UCSC conservation data, with network visualizations. Our deep learning-based model outperforms existing tools in miRNA TSS prediction, achieving the most overlaps with both cell-specific and non-cell-specific validated TSSs. The user-friendly web interface and visualization tools make miRStart 2.0 easily accessible to researchers, enabling efficient identification of miRNA upstream regulatory elements in relation to their TSSs. This updated database provides systems-level insights into gene regulation and disease mechanisms, offering a valuable resource for translational research, facilitating the discovery of novel therapeutic targets and precision medicine strategies. miRStart 2.0 is now accessible at https://awi.cuhk.edu.cn/∼miRStart2.
期刊介绍:
Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.