{"title":"Towards the Galerkin approximation of tetraskelion metamaterials","authors":"Ryan McAvoy, Emilio Barchiesi","doi":"10.1007/s00161-024-01334-z","DOIUrl":null,"url":null,"abstract":"<div><p>The connection of two orthogonal families of parallel equispaced duoskelion beams results in a 2D microstructure characterizing so-called tetraskelion metamaterials. In this paper, based on the homogenization results already obtained for duoskelion beams, we retrieve the internally-constrained two-dimensional nonlinear Cosserat continuum describing the in-plane mechanical behaviour of tetraskelion metamaterials when rigid connection is considered among the two families of duoskelion beams. Contrarily to duoskelion beams, due to the dependence of the deformation energy upon partial derivatives of kinematic quantities along both space directions, the limit model of tetraskelion metamaterials cannot be reduced to an initial value problem describing the motion of an unconstrained particle subjected to a potential. This calls for the development of a finite element formulation taking into account the internal constraint. In this contribution, after introducing the continuum describing tetraskelion metamaterials in terms of its deformation energy, we exploit the Virtual Work Principle to get governing equations in weak form. These equations are then localised to get the equilibrium equations and the associated natural boundary conditions. The feasibility of a Galerkin approach to the approximation of tretraskelion metamaterials is tested on duoskelion beams by defining two different equivalent weak formulations that are discretised and then solved by a Newton–Rhapson scheme for clamped-clamped pulling/pushing tests. It is concluded that, given the high nonlinearity of the problem, the choice of the initial guess is crucial to get a solution and, particularly, a desired one among the several bifurcated ones.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"37 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-024-01334-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The connection of two orthogonal families of parallel equispaced duoskelion beams results in a 2D microstructure characterizing so-called tetraskelion metamaterials. In this paper, based on the homogenization results already obtained for duoskelion beams, we retrieve the internally-constrained two-dimensional nonlinear Cosserat continuum describing the in-plane mechanical behaviour of tetraskelion metamaterials when rigid connection is considered among the two families of duoskelion beams. Contrarily to duoskelion beams, due to the dependence of the deformation energy upon partial derivatives of kinematic quantities along both space directions, the limit model of tetraskelion metamaterials cannot be reduced to an initial value problem describing the motion of an unconstrained particle subjected to a potential. This calls for the development of a finite element formulation taking into account the internal constraint. In this contribution, after introducing the continuum describing tetraskelion metamaterials in terms of its deformation energy, we exploit the Virtual Work Principle to get governing equations in weak form. These equations are then localised to get the equilibrium equations and the associated natural boundary conditions. The feasibility of a Galerkin approach to the approximation of tretraskelion metamaterials is tested on duoskelion beams by defining two different equivalent weak formulations that are discretised and then solved by a Newton–Rhapson scheme for clamped-clamped pulling/pushing tests. It is concluded that, given the high nonlinearity of the problem, the choice of the initial guess is crucial to get a solution and, particularly, a desired one among the several bifurcated ones.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.